Advertisement

Theoretical study of triiodide reduction reaction on nitrogen-doped graphene for dye-sensitized solar cells

  • Yuyan Zhang
  • Juanyuan Hao
  • Jianwei Li
  • Ce HaoEmail author
Regular Article

Abstract

Graphene and its derivatives are attractive for electrocatalytical application in dye-sensitized solar cells because of their unique structures and electronic properties. By means of density functional theory calculations, the mechanism of triiodide reduction reaction on nitrogen-doped graphene (NDG) was studied in acetonitrile environment. The computations demonstrated that the rate-determining step was the ability of NDG to release electrons to active iodine atoms. According to the calculation, the optimal NDG was designed with nitrogen contents of 4.0 % graphite N and 3.0 % pyridinic N approximately. In order to precisely distinguish these two nitrogen species in the optimal NDG, we proposed the chemical shift of 15N NMR of nitrogen doped in graphene provided guidance for the experiments.

Keywords

Nitrogen-doped graphene Triiodide reduction reaction DFT 15N NMR 

Notes

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (Grant Nos. 21036006, 21137001, and 21373042), and the State Key Laboratory of fine chemicals (Panjin) Project (Grant No. JH2014009).

Supplementary material

214_2015_1790_MOESM1_ESM.docx (148 kb)
Supplementary material 1 (DOCX 148 kb)

References

  1. 1.
    O’Regan B, Grätzel M (1991) Nature 353:737–739CrossRefGoogle Scholar
  2. 2.
    Grätzel M (2004) J Photochem Photobiol A 164:3–14CrossRefGoogle Scholar
  3. 3.
    Murakami TN, Grätzel M (2008) Inorg Chim Acta 361:572–580CrossRefGoogle Scholar
  4. 4.
    Hou Y, Wang D, Yang XH, Fang WQ, Zhang B, Wang HF, Lu GZ, Hu P, Zhao HJ, Yang HG (2013) Nat Commun 4:1583CrossRefGoogle Scholar
  5. 5.
    Bezerra CWB, Zhang L, Liu H, Lee K, Marques ALB, Marques EP, Wang H, Zhang J (2007) J Power Sources 173:891–908CrossRefGoogle Scholar
  6. 6.
    Qin Q, Tao J, Yang Y (2010) Synth Met 160:1167–1172CrossRefGoogle Scholar
  7. 7.
    Bu C, Tai Q, Liu Y, Guo S, Zhao X (2013) J Power Sources 221:78–83CrossRefGoogle Scholar
  8. 8.
    Zhao W, Zhu X, Bi H, Cui H, Sun S, Huang F (2013) J Power Sources 242:28–32CrossRefGoogle Scholar
  9. 9.
    Wang YC, Wang DY, Jiang YT, Chen HA, Chen CC, Ho KC, Chou HL, Chen CW (2013) Angew Chem Int Ed 52:6694–6698CrossRefGoogle Scholar
  10. 10.
    Gong F, Wang H, Xu X, Zhou G, Wang ZS (2012) J Am Chem Soc 134:10953–10958CrossRefGoogle Scholar
  11. 11.
    Cai H, Tang Q, He B, Li P (2014) J Power Sources 258:117–121CrossRefGoogle Scholar
  12. 12.
    Huang Z, Liu X, Li K, Li D, Luo Y, Li H, Song W, Chen L, Meng Q (2007) Electrochem Commun 9:596–598CrossRefGoogle Scholar
  13. 13.
    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595–6663CrossRefGoogle Scholar
  14. 14.
    Dong P, Pint CL, Hainey M, Mirri F, Zhan Y, Zhang J, Pasquali M, Hauge RH, Verduzco R, Jiang M, Lin H, Lou J, Appl ACS (2011) Mater Interfaces 3:3157–3161CrossRefGoogle Scholar
  15. 15.
    Chou CS, Huang CI, Yang RY, Wang CP (2010) Adv Powder Technol 21:542–550CrossRefGoogle Scholar
  16. 16.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669CrossRefGoogle Scholar
  17. 17.
    Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) Science 324:768–771CrossRefGoogle Scholar
  18. 18.
    Wang H, Xie M, Thia L, Fisher A, Wang X (2014) Phys Chem Lett 5:119–125CrossRefGoogle Scholar
  19. 19.
    Wang H, Maiyalagan T, Wang X (2012) ACS Catal 2:781–794CrossRefGoogle Scholar
  20. 20.
    Ito Y, Christodoulou C, Vittorio Nardi N, Koch N, Sachdev H, Müllen K (2014) ACS Nano 8:3337–3346CrossRefGoogle Scholar
  21. 21.
    Hou S, Cai X, Wu H, Yu X, Peng M, Yan K, Zou D (2013) Energy Environ Sci 6:3356–3362CrossRefGoogle Scholar
  22. 22.
    Liu Q, Li QS, Lu GQ, Luo JH, Yang LN, Chen SL, Li ZS (2013) Theor Chem Acc 133:1437CrossRefGoogle Scholar
  23. 23.
    Zhang H, Ge M, Yang L, Zhou Z, Chen W, Li Q, Liu L (2013) J Phys Chem C 117:10285–10290CrossRefGoogle Scholar
  24. 24.
    Zhang B, Zhang NN, Chen JF, Hou Y, Yang S, Guo JW, Yang XH, Zhong JH, Wang HF, Hu P, Zhao HJ, Yang HG (2013) Sci Rep 3:3109Google Scholar
  25. 25.
    Zhang L, Xia Z (2011) J Phys Chem C 115:11170–11176CrossRefGoogle Scholar
  26. 26.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A. 01. Gaussian, Wallingford, CTGoogle Scholar
  27. 27.
    Becke AD (1993) J Chem Phys 98:5457–5462Google Scholar
  28. 28.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Phys Chem Lett 98:11624–11627Google Scholar
  29. 29.
    Grimme S (2006) J Comp Chem 27:1787–1799CrossRefGoogle Scholar
  30. 30.
    Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) J Chem Phys 89:2193–2218CrossRefGoogle Scholar
  31. 31.
    Dunning TH Jr, Hay PJ (1976) In: HF Schaefer III (ed) Modern theoretical chemistry. Plenum, New York, vol 3, pp 1–28Google Scholar
  32. 32.
    Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) J Chem Phys 104:5497–5509CrossRefGoogle Scholar
  33. 33.
    Pastore M, Fantacci S, Angelis FD (2010) J Phys Chem C 114:22742–22750CrossRefGoogle Scholar
  34. 34.
    Usachov D, Fedorov A, Vilkov O, Senkovskiy B, Adamchuk VK, Yashina LV, Volykhov AA, Farjam M, Verbitskiy NI, Gruneis A, Laubschat C, Vyalikh DV (2014) Nano Lett 14:4982–4988CrossRefGoogle Scholar
  35. 35.
    Sandoval S, Kumar N, Sundaresan A, Rao CN, Fuertes A, Tobias G (2014) Chem Eur J 20:11999–12003CrossRefGoogle Scholar
  36. 36.
    Lin YC, Lin CY, Chiu PW (2010) Appl Phys Lett 96:133110CrossRefGoogle Scholar
  37. 37.
    Koch RJ, Weser M, Zhao W, Viñes F, Gotterbarm K, Kozlov SM, Höfert O, Ostler M, Papp C, Gebhardt J, Steinrück HP, Görling A, Seyller T (2012) Phys Rev B 86:075401CrossRefGoogle Scholar
  38. 38.
    Zhang LS, Liang XQ, Song WG, Wu ZY (2010) Phys Chem Chem Phys 12:12055–12059CrossRefGoogle Scholar
  39. 39.
    Wang X, Hou Z, Ikeda T, Huang SF, Terakura K, Boero M, Oshima M, Kakimoto MA, Miyata S (2011) Phys Rev B 84:245434CrossRefGoogle Scholar
  40. 40.
    Niwa H, Horiba K, Harada Y, Oshima M, Ikeda T, Terakura K, Ozaki JI, Miyata S (2009) J Power Sources 187:93–97CrossRefGoogle Scholar
  41. 41.
    Ray SC, Pao CW, Chiou JW, Tsai HM, Jan JC, Pong WF, McCann R, Roy SS, Papakonstantinou P, McLaughlin JA (2005) J Appl Phys 98:033708CrossRefGoogle Scholar
  42. 42.
    Wang X, Hou Z, Ikeda T, Oshima M, Kakimoto MA, Terakura K (2013) J Phys Chem A 117:579–589CrossRefGoogle Scholar
  43. 43.
    Muller K, Sun Y, Heimermann A, Menges F, Niedner-Schatteburg G, Wiillen C, Thiel RW (2013) Chem Eur J 19:7825–7834CrossRefGoogle Scholar
  44. 44.
    Kelemen SR, Afeworki M, Gorbaty ML, Kwiatek PJ (2002) Energy Fuels 16:1507–1515CrossRefGoogle Scholar
  45. 45.
    De Benassuti L, Recca T, Molteni G (2007) Tetrahedron 63:3302–3305CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Fine ChemicalsDalian University of TechnologyPanjinPeople’s Republic of China

Personalised recommendations