Skip to main content
Log in

Theoretical study of triiodide reduction reaction on nitrogen-doped graphene for dye-sensitized solar cells

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Graphene and its derivatives are attractive for electrocatalytical application in dye-sensitized solar cells because of their unique structures and electronic properties. By means of density functional theory calculations, the mechanism of triiodide reduction reaction on nitrogen-doped graphene (NDG) was studied in acetonitrile environment. The computations demonstrated that the rate-determining step was the ability of NDG to release electrons to active iodine atoms. According to the calculation, the optimal NDG was designed with nitrogen contents of 4.0 % graphite N and 3.0 % pyridinic N approximately. In order to precisely distinguish these two nitrogen species in the optimal NDG, we proposed the chemical shift of 15N NMR of nitrogen doped in graphene provided guidance for the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M (1991) Nature 353:737–739

    Article  Google Scholar 

  2. Grätzel M (2004) J Photochem Photobiol A 164:3–14

    Article  Google Scholar 

  3. Murakami TN, Grätzel M (2008) Inorg Chim Acta 361:572–580

    Article  CAS  Google Scholar 

  4. Hou Y, Wang D, Yang XH, Fang WQ, Zhang B, Wang HF, Lu GZ, Hu P, Zhao HJ, Yang HG (2013) Nat Commun 4:1583

    Article  Google Scholar 

  5. Bezerra CWB, Zhang L, Liu H, Lee K, Marques ALB, Marques EP, Wang H, Zhang J (2007) J Power Sources 173:891–908

    Article  CAS  Google Scholar 

  6. Qin Q, Tao J, Yang Y (2010) Synth Met 160:1167–1172

    Article  CAS  Google Scholar 

  7. Bu C, Tai Q, Liu Y, Guo S, Zhao X (2013) J Power Sources 221:78–83

    Article  CAS  Google Scholar 

  8. Zhao W, Zhu X, Bi H, Cui H, Sun S, Huang F (2013) J Power Sources 242:28–32

    Article  CAS  Google Scholar 

  9. Wang YC, Wang DY, Jiang YT, Chen HA, Chen CC, Ho KC, Chou HL, Chen CW (2013) Angew Chem Int Ed 52:6694–6698

    Article  CAS  Google Scholar 

  10. Gong F, Wang H, Xu X, Zhou G, Wang ZS (2012) J Am Chem Soc 134:10953–10958

    Article  CAS  Google Scholar 

  11. Cai H, Tang Q, He B, Li P (2014) J Power Sources 258:117–121

    Article  CAS  Google Scholar 

  12. Huang Z, Liu X, Li K, Li D, Luo Y, Li H, Song W, Chen L, Meng Q (2007) Electrochem Commun 9:596–598

    Article  CAS  Google Scholar 

  13. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  14. Dong P, Pint CL, Hainey M, Mirri F, Zhan Y, Zhang J, Pasquali M, Hauge RH, Verduzco R, Jiang M, Lin H, Lou J, Appl ACS (2011) Mater Interfaces 3:3157–3161

    Article  CAS  Google Scholar 

  15. Chou CS, Huang CI, Yang RY, Wang CP (2010) Adv Powder Technol 21:542–550

    Article  CAS  Google Scholar 

  16. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  17. Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) Science 324:768–771

    Article  CAS  Google Scholar 

  18. Wang H, Xie M, Thia L, Fisher A, Wang X (2014) Phys Chem Lett 5:119–125

    Article  CAS  Google Scholar 

  19. Wang H, Maiyalagan T, Wang X (2012) ACS Catal 2:781–794

    Article  CAS  Google Scholar 

  20. Ito Y, Christodoulou C, Vittorio Nardi N, Koch N, Sachdev H, Müllen K (2014) ACS Nano 8:3337–3346

    Article  CAS  Google Scholar 

  21. Hou S, Cai X, Wu H, Yu X, Peng M, Yan K, Zou D (2013) Energy Environ Sci 6:3356–3362

    Article  CAS  Google Scholar 

  22. Liu Q, Li QS, Lu GQ, Luo JH, Yang LN, Chen SL, Li ZS (2013) Theor Chem Acc 133:1437

    Article  Google Scholar 

  23. Zhang H, Ge M, Yang L, Zhou Z, Chen W, Li Q, Liu L (2013) J Phys Chem C 117:10285–10290

    Article  CAS  Google Scholar 

  24. Zhang B, Zhang NN, Chen JF, Hou Y, Yang S, Guo JW, Yang XH, Zhong JH, Wang HF, Hu P, Zhao HJ, Yang HG (2013) Sci Rep 3:3109

    Google Scholar 

  25. Zhang L, Xia Z (2011) J Phys Chem C 115:11170–11176

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A. 01. Gaussian, Wallingford, CT

    Google Scholar 

  27. Becke AD (1993) J Chem Phys 98:5457–5462

    Google Scholar 

  28. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Phys Chem Lett 98:11624–11627

    Google Scholar 

  29. Grimme S (2006) J Comp Chem 27:1787–1799

    Article  CAS  Google Scholar 

  30. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) J Chem Phys 89:2193–2218

    Article  CAS  Google Scholar 

  31. Dunning TH Jr, Hay PJ (1976) In: HF Schaefer III (ed) Modern theoretical chemistry. Plenum, New York, vol 3, pp 1–28

  32. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) J Chem Phys 104:5497–5509

    Article  CAS  Google Scholar 

  33. Pastore M, Fantacci S, Angelis FD (2010) J Phys Chem C 114:22742–22750

    Article  CAS  Google Scholar 

  34. Usachov D, Fedorov A, Vilkov O, Senkovskiy B, Adamchuk VK, Yashina LV, Volykhov AA, Farjam M, Verbitskiy NI, Gruneis A, Laubschat C, Vyalikh DV (2014) Nano Lett 14:4982–4988

    Article  CAS  Google Scholar 

  35. Sandoval S, Kumar N, Sundaresan A, Rao CN, Fuertes A, Tobias G (2014) Chem Eur J 20:11999–12003

    Article  CAS  Google Scholar 

  36. Lin YC, Lin CY, Chiu PW (2010) Appl Phys Lett 96:133110

    Article  Google Scholar 

  37. Koch RJ, Weser M, Zhao W, Viñes F, Gotterbarm K, Kozlov SM, Höfert O, Ostler M, Papp C, Gebhardt J, Steinrück HP, Görling A, Seyller T (2012) Phys Rev B 86:075401

    Article  Google Scholar 

  38. Zhang LS, Liang XQ, Song WG, Wu ZY (2010) Phys Chem Chem Phys 12:12055–12059

    Article  CAS  Google Scholar 

  39. Wang X, Hou Z, Ikeda T, Huang SF, Terakura K, Boero M, Oshima M, Kakimoto MA, Miyata S (2011) Phys Rev B 84:245434

    Article  Google Scholar 

  40. Niwa H, Horiba K, Harada Y, Oshima M, Ikeda T, Terakura K, Ozaki JI, Miyata S (2009) J Power Sources 187:93–97

    Article  CAS  Google Scholar 

  41. Ray SC, Pao CW, Chiou JW, Tsai HM, Jan JC, Pong WF, McCann R, Roy SS, Papakonstantinou P, McLaughlin JA (2005) J Appl Phys 98:033708

    Article  Google Scholar 

  42. Wang X, Hou Z, Ikeda T, Oshima M, Kakimoto MA, Terakura K (2013) J Phys Chem A 117:579–589

    Article  CAS  Google Scholar 

  43. Muller K, Sun Y, Heimermann A, Menges F, Niedner-Schatteburg G, Wiillen C, Thiel RW (2013) Chem Eur J 19:7825–7834

    Article  CAS  Google Scholar 

  44. Kelemen SR, Afeworki M, Gorbaty ML, Kwiatek PJ (2002) Energy Fuels 16:1507–1515

    Article  CAS  Google Scholar 

  45. De Benassuti L, Recca T, Molteni G (2007) Tetrahedron 63:3302–3305

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (Grant Nos. 21036006, 21137001, and 21373042), and the State Key Laboratory of fine chemicals (Panjin) Project (Grant No. JH2014009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ce Hao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Hao, J., Li, J. et al. Theoretical study of triiodide reduction reaction on nitrogen-doped graphene for dye-sensitized solar cells. Theor Chem Acc 135, 23 (2016). https://doi.org/10.1007/s00214-015-1790-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1790-8

Keywords

Navigation