Skip to main content

Computationally designed zirconium organometallic catalyst for direct epoxidation of alkenes without allylic H atoms: aromatic linkage eliminates formation of inert octahedral complexes

Abstract

We used density functional theory to computationally design a Zr organometallic catalyst for selectively oxidizing substrates using molecular oxygen as oxidant without coreductant. Each selective oxidation cycle involves four general steps: (a) a peroxo or weakly adsorbed O2 group releases an O atom to substrate to form substrate oxide and an oxo group, (b) an oxygen molecule adds to the oxo group to generate an η2-ozone group, (c) the η2-ozone group rearranges to form an η3-ozone group, and (d) the η3-ozone group releases an O atom to substrate to form substrate oxide and regenerate the peroxo or weakly adsorbed O2 group. This catalyst could potentially be synthesized via the condensation reaction Zr(N(R)R′)4 + 2 C6H4–1,6-(N(C6H3–2′,6′-(CH(CH3)2)2)OH)2 → Zr(C6H4–1,6-(N(C6H3–2′,6′-(CH(CH3)2)2)O)2)2 [aka Zr_Benzol catalyst] + 4 N(R)(R′)H where R and R′ are CH3, CH2CH3, or other alkyl groups. For direct ethylene epoxidation, the computed enthalpic energetic span (i.e., effective activation energy for the entire catalytic cycle) is 27.1 kcal/mol, which is one of the lowest values for catalysts studied to date. We study reaction mechanisms and the stability of different catalyst forms as a function of the oxygen atom chemical potential. Notably, an aromatic linkage in each ligand prevents this catalyst from deactivating to form an inactive octahedral-like structure that contains the same atoms as the dioxo complex, Zr(Ligand)2(O)2. Due to a side reaction that can transfer an allylic H atom from alkene to catalyst, this catalyst is useful for directly epoxidizing alkenes such as ethylene that do not contain allylic H atoms. To better understand the reaction chemistry, we computed net atomic charges and bond orders for the two catalytically relevant reaction cycles. These results quantify electron transfer and bond forming and breaking during the catalytic process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Cavani F (2010) J Chem Technol Biotechnol 85:1175–1183

    CAS  Article  Google Scholar 

  2. Hermans I, Spier E, Neuenschwander U, Turra N, Baiker A (2009) Top Catal 52:1162–1174

    CAS  Article  Google Scholar 

  3. Grzybowska-Swierkosz B (2000) Top Catal 11:23–42

    Article  Google Scholar 

  4. Lenoir D (2006) Angew Chem Int Ed 45:3206–3210

    CAS  Article  Google Scholar 

  5. Punniyamurthy T, Velusamy S, Iqbal J (2005) Chem Rev 105:2329–2363

    CAS  Article  Google Scholar 

  6. Della Pina C, Falletta E, Prati L, Rossi M (2008) Chem Soc Rev 37:2077–2095

    CAS  Article  Google Scholar 

  7. Shi Z, Zhang C, Tang C, Jiao N (2012) Chem Soc Rev 41:3381–3430

    CAS  Article  Google Scholar 

  8. Mallat T, Baiker A (2004) Chem Rev 104:3037–3058

    CAS  Article  Google Scholar 

  9. Sheldon R, Arends I, Ten Brink G, Dijksman A (2002) Acc Chem Res 35:774–781

    CAS  Article  Google Scholar 

  10. Lin M (2001) Appl Catal A 207:1–16

    CAS  Article  Google Scholar 

  11. Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans RE, Elam JW, Meyer RJ, Redfern PC, Teschner D, Schlogl R, Pellin MJ, Curtiss LA, Vajda S (2010) Science 328:224–228

    CAS  Article  Google Scholar 

  12. Van Santen RA, Kuipers H (1987) Adv Catal 35:265–321

    Google Scholar 

  13. Crotti P, Pineschi M (2006) In: Yudin AK (ed) Epoxides in complex molecule synthesis. Wiley-VCH, Weinheim, pp 271–314

    Google Scholar 

  14. Kahlich D, Wiechern U, Linder J (2012) In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, pp 313–335

  15. Xia QH, Ge HQ, Ye CP, Liu ZM, Su KX (2005) Chem Rev 105:1603–1662

    CAS  Article  Google Scholar 

  16. Grigoropoulou G, Clark JH, Elings JA (2003) Green Chem 5:1–7

    CAS  Article  Google Scholar 

  17. McGarrigle EM, Gilheany DG (2005) Chem Rev 105:1563–1602

    CAS  Article  Google Scholar 

  18. International Energy Agency, International Council of Chemical Associations, DECHEMA Gesellschaft fur Chemische Technik und Biotechnologie E V (2013) Technology roadmap—energy and GHG Reductions in the chemical industry via catalytic processes, Paris, pp 1–56

  19. Ozbek M, van Santen R (2013) Catal Lett 143:131–141

    Article  Google Scholar 

  20. Nijhuis TA, Makkee M, Moulijn JA, Weckhuysen BM (2006) Ind Eng Chem Res 45:3447–3459

    CAS  Article  Google Scholar 

  21. Manz TA, Yang B (2014) RSC Adv 4:27755–27774

    CAS  Article  Google Scholar 

  22. Yang B, Manz TA (2015) RSC Adv 5:12311–12322

    CAS  Article  Google Scholar 

  23. Stanciu C, Jones ME, Fanwick PE, Abu-Omar MM (2007) J Am Chem Soc 129:12400–12401

    CAS  Article  Google Scholar 

  24. Lubben TV, Wolczanski PT (1985) J Am Chem Soc 107:701–703

    CAS  Article  Google Scholar 

  25. Lubben TV, Wolczanski PT (1987) J Am Chem Soc 109:424–435

    CAS  Article  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, BaroneV, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li Z, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Gaussian, Inc., Wallingford CT, Revision C.01

  27. Becke AD (1993) J Chem Phys 98:5648–5652

    CAS  Article  Google Scholar 

  28. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    CAS  Article  Google Scholar 

  29. Hratchian HP, Schlegel HB (2004) J Chem Phys 120:9918–9924

    CAS  Article  Google Scholar 

  30. Hratchian HP, Schlegel HB (2005) J Chem Theory Comput 1:61–69

    CAS  Article  Google Scholar 

  31. Schröder D, Shaik S, Schwarz H (2000) Acc Chem Res 33:139–145

    Article  Google Scholar 

  32. Harvey JN, Poli R, Smith KM (2003) Coord Chem Rev 238–239:347–361

    Article  Google Scholar 

  33. Green JC, Harvey JN, Rinaldo P (2002) J Chem Soc Dalton Trans 31:1861–1866

    Article  Google Scholar 

  34. Manz TA, Sholl DS (2011) J Chem Theory Comput 7:4146–4164

    CAS  Article  Google Scholar 

  35. Manz TA, Sholl DS (2012) J Chem Theory Comput 8:2844–2867

    CAS  Article  Google Scholar 

  36. Manz TA, Limas NG (2015) DDEC6: A method for computing even-tempered net atomic charges in periodic and nonperiodic materials, pp 1–97. arXiv:1512.08270 [physics.chem-ph]

  37. Manz TA, Gabaldon Limas N (2015) Chargemol program for performing DDEC analysis, version 3.4, December 2015, ddec.sourceforge.net

  38. Kozuch S, Shaik S (2011) Acc Chem Res 44:101–110

    CAS  Article  Google Scholar 

  39. Manz TA, Sholl DS (2010) J Comput Chem 31:1528–1541

    CAS  Google Scholar 

  40. Gellman AJ (2002) J Phys Chem B 106:10509–10517

    CAS  Article  Google Scholar 

  41. Gellman AJ (2000) Acc Chem Res 33:19–26

    CAS  Article  Google Scholar 

  42. Gellman AJ, Buelow MT, Street SC, Morton TH (2000) J Phys Chem A 104:2476–2485

    CAS  Article  Google Scholar 

  43. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335

    CAS  Article  Google Scholar 

  44. Cossi M, Rega N, Scalmani G, Barone V (2001) J Chem Phys 114:5691–5701

    CAS  Article  Google Scholar 

  45. Pascual-Ahuir JL, Silla E, Tuñón I (1994) J Comput Chem 15:1127–1138

    CAS  Article  Google Scholar 

  46. York DM, Karplus M (1999) J Phys Chem A 103:11060–11079

    CAS  Article  Google Scholar 

  47. Scalmani G, Frisch MJ (2010) J Chem Phys 132:114110

    Article  Google Scholar 

  48. Shin SB, Chadwick D (2010) Ind Eng Chem Res 49:8125–8134

    CAS  Article  Google Scholar 

  49. Blanco-Brieva G, Capel-Sanchez MC, de Frutos MP, Padilla-Polo A, Campos-Martin JM, Fierro JLG (2008) Ind Eng Chem Res 47:8011–8015

    CAS  Article  Google Scholar 

  50. Zhao JL, Zhou JC, Su J, Guo HC, Wang XS, Gong WM (2007) AIChE J 53:3204–3209

    CAS  Article  Google Scholar 

  51. Kamata K, Yonehara K, Sumida Y, Yamaguchi K, Hikichi S, Mizuno N (2003) Science 300:964–966

    CAS  Article  Google Scholar 

  52. Ghanta M, Fahey DR, Busch DH, Subramaniam B (2013) ACS Sustain Chem Eng 1:268–277

    CAS  Article  Google Scholar 

  53. Zuwei X, Ning Z, Yu S, Kunlan L (2001) Science 292:1139–1141

    CAS  Article  Google Scholar 

  54. Lee HJ, Shi TP, Busch DH, Subramaniam B (2007) Chem Eng Sci 62:7282–7289

    CAS  Article  Google Scholar 

  55. Lane BS, Burgess K (2003) Chem Rev 103:2457–2473

    CAS  Article  Google Scholar 

  56. Liu YY, Murata K, Inaba M (2004) Chem Commun 40:582–583

    Article  Google Scholar 

  57. Yoshida H, Murata C, Hattori T (2000) J Catal 194:364–372

    CAS  Article  Google Scholar 

  58. Chu H, Yang L, Zhang QH, Wang Y (2006) J Catal 241:225–228

    CAS  Article  Google Scholar 

  59. Kahn M, Seubsai A, Onal I, Senkan S (2010) Top Catal 53:86–91

    CAS  Article  Google Scholar 

  60. Liu Y, Murata K, Inaba M (2006) Chem Lett 35:436–437

    CAS  Article  Google Scholar 

  61. Murata K, Liu Y, Mimura N, Inaba M (2003) J Catal 220:513–518

    CAS  Article  Google Scholar 

  62. Yang LJ, He JL, Zhang QH, Wang Y (2010) J Catal 276:76–84

    CAS  Article  Google Scholar 

  63. Ghosh S, Acharyya S, Tiwari R, Sarkar B, Singha R, Pendem C, Sasaki T, Bal R (2014) ACS Catal 4:2169–2174

    CAS  Article  Google Scholar 

  64. Lundin A, Panas I, Ahlberg E (2009) J Phys Chem A 113:282–290

    CAS  Article  Google Scholar 

  65. de Visser S, Kaneti J, Neumann R, Shaik S (2003) J Org Chem 68:2903–2912

    Article  Google Scholar 

  66. Joshi A, Delgass W, Thomson K (2007) J Phys Chem C 111:7841–7844

    CAS  Article  Google Scholar 

  67. Comas-Vives A, Lledos A, Poli R (2010) Chem Euro J 16:2147–2158

    CAS  Article  Google Scholar 

  68. Dinoi C, Ciclosi M, Manoury E, Maron L, Perrin L, Poli R (2010) Chem Eur J 16:9572–9584

    CAS  Article  Google Scholar 

  69. Herbert M, Montilla F, Alvarez E, Galindo A (2012) Dalton Trans 41:6942–6956

    CAS  Article  Google Scholar 

  70. Kuznetsov ML, Pessoa JC (2009) Dalton Trans 38:5460–5468

    Article  Google Scholar 

  71. Jee J, Comas-Vives A, Dinoi C, Ujaque G, van Eldik R, Lledos A, Poli R (2007) Inorg Chem 46:4103–4113

    CAS  Article  Google Scholar 

  72. Hammond GS (1955) J Am Chem Soc 77:334–338

    CAS  Article  Google Scholar 

  73. Leffler JE (1953) Science 117:340–341

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Supercomputing resources were provided by the Extreme Science and Engineering Discovery Environment (XSEDE). XSEDE is funded by NSF grant OCI-1053575. XSEDE project grant TG-CTS100027 provided allocations on the Stampede cluster at the Texas Advanced Computing Center (TACC) and the Trestles and Comet clusters at the San Diego Supercomputing Center (SDSC). The authors sincerely thank the technical support staff of XSEDE, TACC, and SDSC. The authors also thank Dr. Karen Goldberg and Wilson Bailey for useful discussions regarding the proposed catalyst synthesis reaction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Manz.

Ethics declarations

Conflict of interest

The authors and NMSU’s Office of Intellectual Property (Arrowhead Center, Inc.) have applied for a patent on some of the results described in this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2015_1789_MOESM1_ESM.pdf

Online Resource 1: DFT-optimized geometries and energies; imaginary frequency for each transition state; triplet-quintet crossing curves for O2 addition to the oxo complex; table of computed relative energies (ESCF, EZP, H, and G) for the Zr_Benzol catalyst with various oxygen-comprised adsorbates; table of assigned spin magnetic moments for triplet complexes; junior and master catalytic cycles and relative energy profiles for direct propene epoxidation using the Zr_Benzol catalyst. (PDF 11509 kb)

214_2015_1789_MOESM2_ESM.zip

Online Resource 2: A 7z format archive containing .xyz files (which can be read using any text editor or the free Jmol visualization program downloadable from jmol.sourceforge.net) containing net atomic charges, bond orders, and atomic spin moments (for spin-polarized systems) for all of the DFT-optimized geometries. (ZIP 2322 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Manz, T.A. Computationally designed zirconium organometallic catalyst for direct epoxidation of alkenes without allylic H atoms: aromatic linkage eliminates formation of inert octahedral complexes. Theor Chem Acc 135, 21 (2016). https://doi.org/10.1007/s00214-015-1789-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1789-1

Keywords

  • Ethylene epoxidation
  • Ethylene oxide
  • Computational catalysis
  • Selective oxidation
  • Alkene epoxidation
  • Organometallic complexes