Advertisement

Computationally designed zirconium organometallic catalyst for direct epoxidation of alkenes without allylic H atoms: aromatic linkage eliminates formation of inert octahedral complexes

  • Bo Yang
  • Thomas A. ManzEmail author
Regular Article

Abstract

We used density functional theory to computationally design a Zr organometallic catalyst for selectively oxidizing substrates using molecular oxygen as oxidant without coreductant. Each selective oxidation cycle involves four general steps: (a) a peroxo or weakly adsorbed O2 group releases an O atom to substrate to form substrate oxide and an oxo group, (b) an oxygen molecule adds to the oxo group to generate an η2-ozone group, (c) the η2-ozone group rearranges to form an η3-ozone group, and (d) the η3-ozone group releases an O atom to substrate to form substrate oxide and regenerate the peroxo or weakly adsorbed O2 group. This catalyst could potentially be synthesized via the condensation reaction Zr(N(R)R′)4 + 2 C6H4–1,6-(N(C6H3–2′,6′-(CH(CH3)2)2)OH)2 → Zr(C6H4–1,6-(N(C6H3–2′,6′-(CH(CH3)2)2)O)2)2 [aka Zr_Benzol catalyst] + 4 N(R)(R′)H where R and R′ are CH3, CH2CH3, or other alkyl groups. For direct ethylene epoxidation, the computed enthalpic energetic span (i.e., effective activation energy for the entire catalytic cycle) is 27.1 kcal/mol, which is one of the lowest values for catalysts studied to date. We study reaction mechanisms and the stability of different catalyst forms as a function of the oxygen atom chemical potential. Notably, an aromatic linkage in each ligand prevents this catalyst from deactivating to form an inactive octahedral-like structure that contains the same atoms as the dioxo complex, Zr(Ligand)2(O)2. Due to a side reaction that can transfer an allylic H atom from alkene to catalyst, this catalyst is useful for directly epoxidizing alkenes such as ethylene that do not contain allylic H atoms. To better understand the reaction chemistry, we computed net atomic charges and bond orders for the two catalytically relevant reaction cycles. These results quantify electron transfer and bond forming and breaking during the catalytic process.

Keywords

Ethylene epoxidation Ethylene oxide Computational catalysis Selective oxidation Alkene epoxidation Organometallic complexes 

Notes

Acknowledgments

Supercomputing resources were provided by the Extreme Science and Engineering Discovery Environment (XSEDE). XSEDE is funded by NSF grant OCI-1053575. XSEDE project grant TG-CTS100027 provided allocations on the Stampede cluster at the Texas Advanced Computing Center (TACC) and the Trestles and Comet clusters at the San Diego Supercomputing Center (SDSC). The authors sincerely thank the technical support staff of XSEDE, TACC, and SDSC. The authors also thank Dr. Karen Goldberg and Wilson Bailey for useful discussions regarding the proposed catalyst synthesis reaction.

Compliance with ethical standards

Conflict of interest

The authors and NMSU’s Office of Intellectual Property (Arrowhead Center, Inc.) have applied for a patent on some of the results described in this paper.

Supplementary material

214_2015_1789_MOESM1_ESM.pdf (11.2 mb)
Online Resource 1: DFT-optimized geometries and energies; imaginary frequency for each transition state; triplet-quintet crossing curves for O2 addition to the oxo complex; table of computed relative energies (ESCF, EZP, H, and G) for the Zr_Benzol catalyst with various oxygen-comprised adsorbates; table of assigned spin magnetic moments for triplet complexes; junior and master catalytic cycles and relative energy profiles for direct propene epoxidation using the Zr_Benzol catalyst. (PDF 11509 kb)
214_2015_1789_MOESM2_ESM.zip (2.3 mb)
Online Resource 2: A 7z format archive containing .xyz files (which can be read using any text editor or the free Jmol visualization program downloadable from jmol.sourceforge.net) containing net atomic charges, bond orders, and atomic spin moments (for spin-polarized systems) for all of the DFT-optimized geometries. (ZIP 2322 kb)

References

  1. 1.
    Cavani F (2010) J Chem Technol Biotechnol 85:1175–1183CrossRefGoogle Scholar
  2. 2.
    Hermans I, Spier E, Neuenschwander U, Turra N, Baiker A (2009) Top Catal 52:1162–1174CrossRefGoogle Scholar
  3. 3.
    Grzybowska-Swierkosz B (2000) Top Catal 11:23–42CrossRefGoogle Scholar
  4. 4.
    Lenoir D (2006) Angew Chem Int Ed 45:3206–3210CrossRefGoogle Scholar
  5. 5.
    Punniyamurthy T, Velusamy S, Iqbal J (2005) Chem Rev 105:2329–2363CrossRefGoogle Scholar
  6. 6.
    Della Pina C, Falletta E, Prati L, Rossi M (2008) Chem Soc Rev 37:2077–2095CrossRefGoogle Scholar
  7. 7.
    Shi Z, Zhang C, Tang C, Jiao N (2012) Chem Soc Rev 41:3381–3430CrossRefGoogle Scholar
  8. 8.
    Mallat T, Baiker A (2004) Chem Rev 104:3037–3058CrossRefGoogle Scholar
  9. 9.
    Sheldon R, Arends I, Ten Brink G, Dijksman A (2002) Acc Chem Res 35:774–781CrossRefGoogle Scholar
  10. 10.
    Lin M (2001) Appl Catal A 207:1–16CrossRefGoogle Scholar
  11. 11.
    Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans RE, Elam JW, Meyer RJ, Redfern PC, Teschner D, Schlogl R, Pellin MJ, Curtiss LA, Vajda S (2010) Science 328:224–228CrossRefGoogle Scholar
  12. 12.
    Van Santen RA, Kuipers H (1987) Adv Catal 35:265–321Google Scholar
  13. 13.
    Crotti P, Pineschi M (2006) In: Yudin AK (ed) Epoxides in complex molecule synthesis. Wiley-VCH, Weinheim, pp 271–314Google Scholar
  14. 14.
    Kahlich D, Wiechern U, Linder J (2012) In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, pp 313–335Google Scholar
  15. 15.
    Xia QH, Ge HQ, Ye CP, Liu ZM, Su KX (2005) Chem Rev 105:1603–1662CrossRefGoogle Scholar
  16. 16.
    Grigoropoulou G, Clark JH, Elings JA (2003) Green Chem 5:1–7CrossRefGoogle Scholar
  17. 17.
    McGarrigle EM, Gilheany DG (2005) Chem Rev 105:1563–1602CrossRefGoogle Scholar
  18. 18.
    International Energy Agency, International Council of Chemical Associations, DECHEMA Gesellschaft fur Chemische Technik und Biotechnologie E V (2013) Technology roadmap—energy and GHG Reductions in the chemical industry via catalytic processes, Paris, pp 1–56Google Scholar
  19. 19.
    Ozbek M, van Santen R (2013) Catal Lett 143:131–141CrossRefGoogle Scholar
  20. 20.
    Nijhuis TA, Makkee M, Moulijn JA, Weckhuysen BM (2006) Ind Eng Chem Res 45:3447–3459CrossRefGoogle Scholar
  21. 21.
    Manz TA, Yang B (2014) RSC Adv 4:27755–27774CrossRefGoogle Scholar
  22. 22.
    Yang B, Manz TA (2015) RSC Adv 5:12311–12322CrossRefGoogle Scholar
  23. 23.
    Stanciu C, Jones ME, Fanwick PE, Abu-Omar MM (2007) J Am Chem Soc 129:12400–12401CrossRefGoogle Scholar
  24. 24.
    Lubben TV, Wolczanski PT (1985) J Am Chem Soc 107:701–703CrossRefGoogle Scholar
  25. 25.
    Lubben TV, Wolczanski PT (1987) J Am Chem Soc 109:424–435CrossRefGoogle Scholar
  26. 26.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, BaroneV, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li Z, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Gaussian, Inc., Wallingford CT, Revision C.01Google Scholar
  27. 27.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  28. 28.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627CrossRefGoogle Scholar
  29. 29.
    Hratchian HP, Schlegel HB (2004) J Chem Phys 120:9918–9924CrossRefGoogle Scholar
  30. 30.
    Hratchian HP, Schlegel HB (2005) J Chem Theory Comput 1:61–69CrossRefGoogle Scholar
  31. 31.
    Schröder D, Shaik S, Schwarz H (2000) Acc Chem Res 33:139–145CrossRefGoogle Scholar
  32. 32.
    Harvey JN, Poli R, Smith KM (2003) Coord Chem Rev 238–239:347–361CrossRefGoogle Scholar
  33. 33.
    Green JC, Harvey JN, Rinaldo P (2002) J Chem Soc Dalton Trans 31:1861–1866CrossRefGoogle Scholar
  34. 34.
    Manz TA, Sholl DS (2011) J Chem Theory Comput 7:4146–4164CrossRefGoogle Scholar
  35. 35.
    Manz TA, Sholl DS (2012) J Chem Theory Comput 8:2844–2867CrossRefGoogle Scholar
  36. 36.
    Manz TA, Limas NG (2015) DDEC6: A method for computing even-tempered net atomic charges in periodic and nonperiodic materials, pp 1–97. arXiv:1512.08270 [physics.chem-ph]
  37. 37.
    Manz TA, Gabaldon Limas N (2015) Chargemol program for performing DDEC analysis, version 3.4, December 2015, ddec.sourceforge.net
  38. 38.
    Kozuch S, Shaik S (2011) Acc Chem Res 44:101–110CrossRefGoogle Scholar
  39. 39.
    Manz TA, Sholl DS (2010) J Comput Chem 31:1528–1541Google Scholar
  40. 40.
    Gellman AJ (2002) J Phys Chem B 106:10509–10517CrossRefGoogle Scholar
  41. 41.
    Gellman AJ (2000) Acc Chem Res 33:19–26CrossRefGoogle Scholar
  42. 42.
    Gellman AJ, Buelow MT, Street SC, Morton TH (2000) J Phys Chem A 104:2476–2485CrossRefGoogle Scholar
  43. 43.
    Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335CrossRefGoogle Scholar
  44. 44.
    Cossi M, Rega N, Scalmani G, Barone V (2001) J Chem Phys 114:5691–5701CrossRefGoogle Scholar
  45. 45.
    Pascual-Ahuir JL, Silla E, Tuñón I (1994) J Comput Chem 15:1127–1138CrossRefGoogle Scholar
  46. 46.
    York DM, Karplus M (1999) J Phys Chem A 103:11060–11079CrossRefGoogle Scholar
  47. 47.
    Scalmani G, Frisch MJ (2010) J Chem Phys 132:114110CrossRefGoogle Scholar
  48. 48.
    Shin SB, Chadwick D (2010) Ind Eng Chem Res 49:8125–8134CrossRefGoogle Scholar
  49. 49.
    Blanco-Brieva G, Capel-Sanchez MC, de Frutos MP, Padilla-Polo A, Campos-Martin JM, Fierro JLG (2008) Ind Eng Chem Res 47:8011–8015CrossRefGoogle Scholar
  50. 50.
    Zhao JL, Zhou JC, Su J, Guo HC, Wang XS, Gong WM (2007) AIChE J 53:3204–3209CrossRefGoogle Scholar
  51. 51.
    Kamata K, Yonehara K, Sumida Y, Yamaguchi K, Hikichi S, Mizuno N (2003) Science 300:964–966CrossRefGoogle Scholar
  52. 52.
    Ghanta M, Fahey DR, Busch DH, Subramaniam B (2013) ACS Sustain Chem Eng 1:268–277CrossRefGoogle Scholar
  53. 53.
    Zuwei X, Ning Z, Yu S, Kunlan L (2001) Science 292:1139–1141CrossRefGoogle Scholar
  54. 54.
    Lee HJ, Shi TP, Busch DH, Subramaniam B (2007) Chem Eng Sci 62:7282–7289CrossRefGoogle Scholar
  55. 55.
    Lane BS, Burgess K (2003) Chem Rev 103:2457–2473CrossRefGoogle Scholar
  56. 56.
    Liu YY, Murata K, Inaba M (2004) Chem Commun 40:582–583CrossRefGoogle Scholar
  57. 57.
    Yoshida H, Murata C, Hattori T (2000) J Catal 194:364–372CrossRefGoogle Scholar
  58. 58.
    Chu H, Yang L, Zhang QH, Wang Y (2006) J Catal 241:225–228CrossRefGoogle Scholar
  59. 59.
    Kahn M, Seubsai A, Onal I, Senkan S (2010) Top Catal 53:86–91CrossRefGoogle Scholar
  60. 60.
    Liu Y, Murata K, Inaba M (2006) Chem Lett 35:436–437CrossRefGoogle Scholar
  61. 61.
    Murata K, Liu Y, Mimura N, Inaba M (2003) J Catal 220:513–518CrossRefGoogle Scholar
  62. 62.
    Yang LJ, He JL, Zhang QH, Wang Y (2010) J Catal 276:76–84CrossRefGoogle Scholar
  63. 63.
    Ghosh S, Acharyya S, Tiwari R, Sarkar B, Singha R, Pendem C, Sasaki T, Bal R (2014) ACS Catal 4:2169–2174CrossRefGoogle Scholar
  64. 64.
    Lundin A, Panas I, Ahlberg E (2009) J Phys Chem A 113:282–290CrossRefGoogle Scholar
  65. 65.
    de Visser S, Kaneti J, Neumann R, Shaik S (2003) J Org Chem 68:2903–2912CrossRefGoogle Scholar
  66. 66.
    Joshi A, Delgass W, Thomson K (2007) J Phys Chem C 111:7841–7844CrossRefGoogle Scholar
  67. 67.
    Comas-Vives A, Lledos A, Poli R (2010) Chem Euro J 16:2147–2158CrossRefGoogle Scholar
  68. 68.
    Dinoi C, Ciclosi M, Manoury E, Maron L, Perrin L, Poli R (2010) Chem Eur J 16:9572–9584CrossRefGoogle Scholar
  69. 69.
    Herbert M, Montilla F, Alvarez E, Galindo A (2012) Dalton Trans 41:6942–6956CrossRefGoogle Scholar
  70. 70.
    Kuznetsov ML, Pessoa JC (2009) Dalton Trans 38:5460–5468CrossRefGoogle Scholar
  71. 71.
    Jee J, Comas-Vives A, Dinoi C, Ujaque G, van Eldik R, Lledos A, Poli R (2007) Inorg Chem 46:4103–4113CrossRefGoogle Scholar
  72. 72.
    Hammond GS (1955) J Am Chem Soc 77:334–338CrossRefGoogle Scholar
  73. 73.
    Leffler JE (1953) Science 117:340–341CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringNew Mexico State UniversityLas CrucesUSA

Personalised recommendations