Advertisement

Novel approach for predicting partition coefficients of linear perfluorinated compounds

  • Abdel Hidalgo
  • Nelaine Mora-DiezEmail author
Regular Article

Abstract

A new approach for predicting octanol–water partition coefficients (Log P) of linear perfluorinated compounds is described, making use of the limited experimental data available, previous observations and the consistent similarities observed between the experimental and calculated (with electronic structure methods and using EPI Suite) slopes of the linear plots of Log P values with the number of carbon atoms (N = 2–11). Eight families of linear organic compounds were investigated: carboxylic acids, perfluorinated carboxylic acids, sulfonic acids and perfluorinated sulfonic acids, together with their corresponding conjugate bases.

Keywords

Octanol–water partition coefficients Log P Kow Linear perfluorinated compounds Carboxylic acids Perfluorinated carboxylic acids Sulfonic acids Perfluorinated sulfonic acids Conjugate bases  

Notes

Acknowledgments

The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support and would like to thank Information Technology Services at Thompson Rivers University.

Supplementary material

214_2015_1784_MOESM1_ESM.docx (312 kb)
Supplementary material 1 (DOCX 311 kb)

References

  1. 1.
    Krafft MP, Riess JG (1998) Highly fluorinated amphiphiles and colloidal systems, and their applications in the biomedical field. A contribution. Biochimie 80:489–514CrossRefGoogle Scholar
  2. 2.
    Lopez-Fontan JL, Sarmiento F, Schulz PC (2005) The aggregation of sodium perfluorooctanoate in water. Colloid Polym Sci 283:862–871CrossRefGoogle Scholar
  3. 3.
    Rosen MB, Lau C, Corton JC (2009) Does exposure to perfluoroalkyl acids present a risk to human health? Toxicol Sci 111:1–3CrossRefGoogle Scholar
  4. 4.
    Conder JM, Hoke RA, de Wolf W, Russel MH, Buck RC (2008) Are PFCAs bioaccumulative? A critical review and comparison with regulatory lipophilic compounds. Environ Sci Technol 42:995–1003CrossRefGoogle Scholar
  5. 5.
    Arsenault G, Chittim B, Gu J, McAlees A, McCrindle R, Robertson V (2008) Separation and fluorine nuclear magnetic resonance spectroscopic (F-19 NMR) analysis of individual branched isomers present in technical perfluorooctanesulfonic acid (PFOS). Chemosphere 73:S53–S59CrossRefGoogle Scholar
  6. 6.
    Seacat AM, Thomford PJ, Hansen KJ, Clemen LA, Eldridge SR, Elcombe CR, Butenhoff JL (2003) Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology 183:117–131CrossRefGoogle Scholar
  7. 7.
    Olsen GW, Church TR, Miller JP, Burris JM, Hansen KJ, Lundberg JK, Armitage JB, Herron RM, Medhdizadehkashi Z, Nobiletti JB, O’Neill EM, Mandel JH, Zobel LR (2003) Perfluorooctanesulfonate and other fluorochemicals in the serum of American Red Cross adult blood donors. Environ Health Perspect 111:1892–1901CrossRefGoogle Scholar
  8. 8.
    Martin JW, Smithwick MM, Braune BM, Hoekstra PF, Muir DCG, Mabury SA (2004) Identification of long-chain perfluorinated acids in biota from the Canadian Arctic. Environ Sci Technol 38:373–380CrossRefGoogle Scholar
  9. 9.
    Ellis DA, Martin JW, De Silva AO, Mabury SA, Hurley MD, Andersen MPS, Wallington TJ (2004) Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids. Environ Sci Technol 38:3316–3321CrossRefGoogle Scholar
  10. 10.
    Riddell N, Arsenault G, Benskin JP, Chittim B, Martin JW, McAlees A, McCrindle R (2009) Branched perfluorooctane sulfonate isomer quantification and characterization in blood serum samples by HPLC/ESI-MS(/MS). Environ Sci Technol 43:7902–7908CrossRefGoogle Scholar
  11. 11.
    De Silva AO, Mabury SA (2004) Isolating isomers of perfluorocarboxylates in polar bears (Ursus maritimus) from two geographical locations. Environ Sci Technol 38:6538–6545CrossRefGoogle Scholar
  12. 12.
    De Silva AO, Mabury SA (2006) Isomer distribution of perfluorocarboxylates in human blood: potential correlation to source. Environ Sci Technol 40:2903–2909CrossRefGoogle Scholar
  13. 13.
    Wallington TJ, Hurley MD, Xia J, Wuebbles DJ, Sillman S, Ito A, Penner JE, Ellis DA, Martin J, Mabury SA, Nielsen OJ, Sulbaek Andersen MP (2006) Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8: 2 fluorotelomer alcohol. Environ Sci Technol 40:924–930CrossRefGoogle Scholar
  14. 14.
    Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH (2006) Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol 40:32–44CrossRefGoogle Scholar
  15. 15.
    Armitage J, Cousins IT, Buck RC, Prevedouros K, Russell MH, MacLeod M, Korzeniowski SH (2006) Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources. Environ Sci Technol 40:6969–6975CrossRefGoogle Scholar
  16. 16.
    Burns DC, Ellis DA, Li H, Mcmurdo CJ, Webster E (2008) Experimental pK(a) determination for perfluorooctanoic acid (PFOA) and the potential impact of pK(a) concentration dependence on laboratory-measured partitioning phenomena and environmental modeling. Environ Sci Technol 42:9283–9288CrossRefGoogle Scholar
  17. 17.
    Webster E, Ellis DA, Reid LK (2010) Modeling the environmental fate of perfluorooctanoic acid and perfluorooctanoate: an investigation of the role of individual species partitioning. Environ Toxicol Chem 29:1466–1475CrossRefGoogle Scholar
  18. 18.
    Armitage JM, MacLeod M, Cousins IT (2009) Comparative assessment of the global fate and transport pathways of long-chain perfluorocarboxylic acids (PFCAs) and perfluorocarboxylates (PFCs) emitted from direct sources. Environ Sci Technol 43:5830–5836CrossRefGoogle Scholar
  19. 19.
    Hazard assessment of perfluorooctane sulfonate (pfos) and its salts; ENV/JM/RD(2002)17; (2002) Organisation for economic co-operation and development, Paris, France. http://www.oecd.org/env/ehs/risk-assessment/2382880.pdf. Accessed on 19 Oct 2015
  20. 20.
    Arp HPH, Niederer C, Goss KU (2006) Predicting the partitioning behavior of various highly fluorinated compounds. Environ Sci Technol 40:7298–7304CrossRefGoogle Scholar
  21. 21.
    Kelly BC, Ikonomou MG, Blair JD, Blair S, Hoover D, Grace R, Gobas FAPC (2009) Perfluoroalkyl contaminants in an arctic marine food web: trophic magnification and wildlife exposure. Environ Sci Technol 43:4037–4043CrossRefGoogle Scholar
  22. 22.
    Rayne S, Forest K (2009) Perfluoroalkyl sulfonic and carboxylic acids: a critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods. J Environ Sci. Health A 44:1145–1199CrossRefGoogle Scholar
  23. 23.
    Armitage JM, MacLeod M, Cousins IT (2009) Modeling the global fate and transport of perfluorooctanoic acid (PFOA) and perfluorooctanoate (PFO) emitted from direct sources using a multispecies mass balance model. Environ Sci Technol 43:1134–1140CrossRefGoogle Scholar
  24. 24.
    Zhao YH, Abraham MH (2005) Octanol/water partition of ionic species, including 544 cations. J Org Chem 70:2633–2640CrossRefGoogle Scholar
  25. 25.
    Jing P, Rodgers PJ, Amemiya S (2009) High lipophilicity of perfluoroalkyl carboxylate and sulfonate: implications for their membrane permeability. J Am Chem Soc 131:2290–2296CrossRefGoogle Scholar
  26. 26.
    de Voogt P, Zurano L, Serne P, Haftka JJH (2012) Experimental hydrophobicity parameters of perfluorinated alkylated substances from reversed-phase high performance liquid chromatography. Environ Chem 9:564–570CrossRefGoogle Scholar
  27. 27.
    Rayne S, Forest K (2009) Congener-specific organic carbon-normalized soil and sediment-water partitioning coefficients for the C-1 through C-8 perfluoroalkyl carboxylic and sulfonic acids. J Environ Sci Health A 44:1374–1387CrossRefGoogle Scholar
  28. 28.
    Higgins CP, Luthy RG (2006) Sorption of perfluorinated surfactants on sediments. Environ Sci Technol 40:7251–7256CrossRefGoogle Scholar
  29. 29.
    Vierke L, Moller A, Klitzke S (2014) Transport of perfluoroalkyl acids in a water-saturated sediment column investigated under near-natural conditions. Environ Pollut 186:7–13CrossRefGoogle Scholar
  30. 30.
    Kim M, Li LY, Grace JR, Yue C (2015) Selecting reliable physicochemical properties of perfluoroalkyl and polyfluoroalkyl substances (PFASs) based on molecular descriptors. Environ Pollut 196:462–472CrossRefGoogle Scholar
  31. 31.
    Wang Z, MacLeod M, Cousins IT, Scheringer M, Hungerbuhler K (2011) Using COSMOtherm to predict physicochemical properties of poly- and perfluorinated alkyl substances (PFASs). Environ Chem 8:389–398CrossRefGoogle Scholar
  32. 32.
    Klamt A, Eckert F, Arlt W (2010) COSMO-RS: an alternative to simulation for calculating thermodynamic properties of liquid mixtures. Annu Rev Chem Biomol 1:101–122CrossRefGoogle Scholar
  33. 33.
    Klamt A (2011) COSMO and COSMO-RS solvation models. Wiley Interdiscip Rev Comput Mol Sci 1:699–709CrossRefGoogle Scholar
  34. 34.
    Moroi Y, Yano H, Shibata O, Yonemitsu T (2001) Determination of acidity constants of perfluoroalkanoic acids. Bull Chem Soc Jpn 74:667–672CrossRefGoogle Scholar
  35. 35.
    Goss KU (2008) The pK(a) values of PFOA and other highly fluorinated carboxylic acids. Environ Sci Technol 42:456–458CrossRefGoogle Scholar
  36. 36.
    Rayne S, Forest K (2010) Theoretical studies on the pK(a) values of perfluoroalkyl carboxylic acids. J Mol Struct (Theochem) 949:60–69CrossRefGoogle Scholar
  37. 37.
    Kutsuna S, Hori H (2008) Experimental determination of Henry’s law constant of perfluorooctanoic acid (PFOA) at 298 K by means of an inert-gas stripping method with a helical plate. Atmos Environ 42:8883–8892CrossRefGoogle Scholar
  38. 38.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari, K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian, Inc., WallingfordGoogle Scholar
  39. 39.
    Becke AD (1993) Density functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  40. 40.
    Lee C, Yang WT, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  41. 41.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 13:6378–6396CrossRefGoogle Scholar
  42. 42.
    Montero-Campillo MM, Mora-Diez N, Lamsabhi AM (2010) Thermodynamic stability of neutral and anionic PFOS: a gas-phase, n-octanol, and water theoretical study. J Phys Chem A 114:10148–10155CrossRefGoogle Scholar
  43. 43.
    Torres FJ, Ochoa-Herrera V, Blowers P, Sierra-Alvarez P (2009) Ab initio study of the structural, electronic, and thermodynamic properties of linear perfluorooctane sulfonate (PFOS) and its branched isomers. Chemosphere 76:1143–1149CrossRefGoogle Scholar
  44. 44.
    Giroday T, Montero-Campillo MM, Mora-Diez N (2014) Thermodynamic stability of PFOS: M06-2X and B3LYP comparison. Comput Theor Chem 1046:81–92CrossRefGoogle Scholar
  45. 45.
    Hidalgo A, Giroday T, Mora-Diez N (2015) Thermodynamic stability of neutral and anionic PFOAs. Theor Chem Acc 134:124CrossRefGoogle Scholar
  46. 46.
    Bunn CW, Howells ER (1954) Structures of molecules and crystals of fluorocarbons. Nature 174:549–551CrossRefGoogle Scholar
  47. 47.
    Monde K, Miura N, Hashimoto M, Taniguchi T, Inabe T (2006) Conformational analysis of chiral helical perfluoroalkyl chains by VCD. J Am Chem Soc 128:6000–6001CrossRefGoogle Scholar
  48. 48.
    Zhang X, Lerner MM (1999) Structural refinement of the perfluorooctanesulfonate anion and its graphite intercalation compounds. Phys Chem Chem Phys 1:5065–5069CrossRefGoogle Scholar
  49. 49.
    Jang SS, Blanco M, Goddard WA, Caldwell G, Ross RB (2003) The source of helicity in perfluorinated N-alkanes. Macromolecules 36:5331–5341CrossRefGoogle Scholar
  50. 50.
    Lehmler HJ, Rama RVVVNS, Nauduri D, Vargo JD, Parkin S (2007) Synthesis and structure of environmentally relevant perfluorinated sulfonamides. J Fluor Chem 128:595–607CrossRefGoogle Scholar
  51. 51.
    Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167CrossRefGoogle Scholar
  52. 52.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  53. 53.
    US EPA (2012) Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11. United States Environmental Protection Agency, Washington, DC, USAGoogle Scholar
  54. 54.
    Armitage JM, Arnot JA, Wania F, Mackay D (2013) Development and evaluation of a mechanistic bioconcentration model for ionogenic organic chemicals in fish. Environ Toxicol Chem 32:115–128CrossRefGoogle Scholar
  55. 55.
    Meylan WM, Howard PH (1991) Bond contribution method for estimating Henry’s law constants. Environ Toxicol Chem 10:1283–1293CrossRefGoogle Scholar
  56. 56.
    Meylan WM, Howard PH (1995) Atom fragment contribution method for estimating octanol–water partition coefficients. J Pharm Sci 84:83–92CrossRefGoogle Scholar
  57. 57.
    CRC Press Online (2015) CRC handbook of chemistry and physics, 91st edn. http://www.hbcpnetbase.com/toc/default.asp?exp=*toc*. Accessed on 19 Oct 2015
  58. 58.
    Feenstra-Bieders GC, Olthof JA (1992) Determination of the solubility of trifluoroacetic acid and sodium trifluoroacetate in various aqueous media. Solvay Duphar Report: 56630/182/91Google Scholar
  59. 59.
    Thus JLG (1997) Addendum report: determination of the partition coefficient of trifluoroacetic acid. Solvay Duphar Report: 56834/45/97Google Scholar
  60. 60.
    Boutonnet JC, Bingham P, Calamari D, de Rooij C, Franklin J, Kawano T, Libre JM, McCulloch A, Malinverno G, Odom JM, Rusch GM, Smythe K, Sobolev I, Thompson R, Tiedje JM (1999) Environmental risk assessment of trifluoroacetic acid. Hum Ecol Risk Assess 5:59–124CrossRefGoogle Scholar
  61. 61.
    Environmental effects of ozone depletion: 1998 assessment (1998) United Nations Environment Programme: Nairobi, Kenya, http://ozone.unep.org/sites/ozone/files/media/Environmental-Effects-Assess98.pdf. Accessed on 19 Oct 2015
  62. 62.
    Safeguarding the ozone layer and the global climate system: issues related to hydrofluorocarbons (2005) Intergovernmental panel on climate change, New York, USA https://www.ipcc.ch/publications_and_data/_safeguarding_the_ozone_layer.htm. Accessed on 19 Oct 2015
  63. 63.
    Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041CrossRefGoogle Scholar
  64. 64.
    Cossi M, Barone V, Mennucci B, Tomasi J (1998) Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chem Phys Lett 286:253–260CrossRefGoogle Scholar
  65. 65.
    Mennucci B, Tomasi J (1997) Continuum solvation models: a new approach to the problem of solute’s charge distribution and cavity boundaries. J Chem Phys 106:5151–5158CrossRefGoogle Scholar
  66. 66.
    Rekker RF, Mannhold R (1992) Calculation of drug lipophilicity: the hydrophobic fragmental constant, 1st edn. VCH, MichiganGoogle Scholar
  67. 67.
    Higgins CP, Luthy RG (2007) Modeling sorption of anionic surfactants onto sediment materials: an a priori approach for perfluoroalkyl surfactants and linear alkylbenzene sulfonates. Environ Sci Technol 41:3254–3261CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of VictoriaVictoriaCanada
  2. 2.Department of ChemistryThompson Rivers UniversityKamloopsCanada

Personalised recommendations