Advertisement

Adsorption of proline, hydroxyproline and glycine on anatase (001) surface: a first-principle study

  • M. Sowmiya
  • K. SenthilkumarEmail author
Regular Article

Abstract

The adhesion property of an implant material is heavily influenced by the interaction between implant material and protein molecules of blood or biological fluids. Collagen is a fibrous protein that plays a crucial role in the extracellular matrix and in connective tissue between organ and bone. In the present work, the first-principle calculations are used to investigate the adsorption of proline, hydroxyproline and glycine, major components of collagen protein on anatase TiO2 (001) surface. The adsorption energies are calculated using GGA with PBE functional and PBE-D2 methods. For proline, hydroxyproline and glycine, the dissociative adsorption configuration is having maximum interaction energy of −1.81 and −2.38, −1.87 and −2.52, −1.53 and −2.11 eV, respectively, at PBE and PBE-D2 methods. The above results indicate that the binding of amino acid with TiO2 is primarily through the carboxyl group. Further, this study shows that the anatase TiO2 crystals with more (001) facets will enhance the biocompatibility and osseointegration of implant material.

Keywords

Proline Hydroxyproline Glycine Anatase (001) surface Adsorption 

Notes

Acknowledgments

One of the authors, M.S. is thankful to the University Grants Commission (UGC), Government of India, for awarding Basic Scientific Research (BSR) Fellowship.

Supplementary material

214_2015_1783_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 11 kb)
214_2015_1783_MOESM2_ESM.doc (2.7 mb)
Supplementary material 2 (DOC 2794 kb)

References

  1. 1.
    Fleming GJ, Adib K, Rodriguez JA, Barteau MA, Idriss H (2007) Surf Sci 601:5726–5731CrossRefGoogle Scholar
  2. 2.
    Fleming GJ, Adib K, Rodriguez JA, Barteau MA, White JM, Idriss H (2008) Surf Sci 602:2029–2038CrossRefGoogle Scholar
  3. 3.
    Lachheb H, Dappozze F, Houas A, Guillard C (2012) J Photochem Photobiol A Chem 246:1–7CrossRefGoogle Scholar
  4. 4.
    Costa D, Garrain PA, Baaden M (2013) Inc J Biomed Mater Res A 101A:1210–1222CrossRefGoogle Scholar
  5. 5.
    Zhang X, Wang F, Liu B, Kelly EY, Servos MR, Liu J (2014) Langmuir 30:839–845CrossRefGoogle Scholar
  6. 6.
    McMaster WA, Wang X, Caruso RA (2012) Appl Mater Interfaces 4:4717–4725CrossRefGoogle Scholar
  7. 7.
    Elias CN, Lima JHC, Valiev R, Mayers MA (2008) J Miner Met Mater Soc 60:46–49CrossRefGoogle Scholar
  8. 8.
    Muir JMR, Idriss H (2013) Surf Sci 617:60–67CrossRefGoogle Scholar
  9. 9.
    Muir JMR, Costa D, Idriss H (2014) Surf Sci 624:8–14CrossRefGoogle Scholar
  10. 10.
    Yu J, Wei W, Menyo MS, Masic A, Waite JH, Israelachvili JN (2013) Biomacromolecules 14:1072–1077CrossRefGoogle Scholar
  11. 11.
    Christensen SL, Chatt A, Zhang P (2012) Langmuir 28:2979–2985CrossRefGoogle Scholar
  12. 12.
    Ong JL, Lucas LC, Raikar GN, Connatser R, Gregory JC (1995) J Mater Sci Mater Med 6:113–119CrossRefGoogle Scholar
  13. 13.
    Kasemo B (2002) Surf Sci 500:656CrossRefGoogle Scholar
  14. 14.
    Castner D, Ratner BD (2002) Surf Sci 500:28CrossRefGoogle Scholar
  15. 15.
    Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ (2005) Tissue Eng 11:1–18CrossRefGoogle Scholar
  16. 16.
    Shukri G, Kasai H (2014) Surf Sci 619:59–66CrossRefGoogle Scholar
  17. 17.
    Sousa C, Tosoni S, Illas F (2013) Chem Rev 113:4456–4495CrossRefGoogle Scholar
  18. 18.
    Tillotson MJ, Brett PM, Bennett RA, Crepso RG (2015) Surf Sci 632:142–153CrossRefGoogle Scholar
  19. 19.
    Koppen S, Bronkalla O, Langel W (2008) J Phys Chem C 112:13600–13606CrossRefGoogle Scholar
  20. 20.
    Liu H, Wang X, Pan C, Liew KM (2012) J Phys Chem C 116:8044–8053CrossRefGoogle Scholar
  21. 21.
    Ojamae L, Aulin C, Pedersen H, Kall PO (2006) J Colloid Interface Sci 296:71–78CrossRefGoogle Scholar
  22. 22.
    Tonner R (2010) Chem Phys Chem 11:1053–1061Google Scholar
  23. 23.
    Forstater JH, Kleinhammes A, Wu Y (2013) Langmuir 29:15013–15021CrossRefGoogle Scholar
  24. 24.
    Jackman MJ, Thomas AG (2014) J Phys Chem C 118:2028–2038CrossRefGoogle Scholar
  25. 25.
    Diebold U (2003) Surf Sci Rep 48:53–229CrossRefGoogle Scholar
  26. 26.
    Ohno T, Sarukawa K, Matsumura M (2002) New J Chem 26:1167–1170CrossRefGoogle Scholar
  27. 27.
    Shklover V, Nazeeruddin MK, Zakeeruddin SM, Barbe C, Kay A, Haibach T, Steurer W, Hermann R, Nissen HU, Gratzel M (1997) Chem Mater 9:430–439CrossRefGoogle Scholar
  28. 28.
    Barnard AS, Zapol P, Curtiss LA (2005) J Chem Theory Comput 1:107–116CrossRefGoogle Scholar
  29. 29.
    Gong XQ, Selloni A (2005) J Phys Chem B 109:19560–19562CrossRefGoogle Scholar
  30. 30.
    Herman GS, Sievers MR, Gao Y (2000) Phys Rev Lett 84:3354–3357CrossRefGoogle Scholar
  31. 31.
    Lazzeri M, Selloni A (2001) Phys Rev Lett 87:266105–266108CrossRefGoogle Scholar
  32. 32.
    Lazzeri M, Vittadini A, Selloni A (2001) Phys Rev B 63:155409–155417CrossRefGoogle Scholar
  33. 33.
    Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Nature 453:638–641CrossRefGoogle Scholar
  34. 34.
    Chen JS, Tan YL, Li CM, Cheah YL, Luan D, Madhavi S, Boey FY, Archer LA, Lou XW (2010) J Am Chem Soc 132:6124–6130CrossRefGoogle Scholar
  35. 35.
    Poulsson AHC, Mitchell SA, Davidson MR, Johnstone AJ, Emmison N, Bradley RH (2009) Langmuir 25:3718–3727CrossRefGoogle Scholar
  36. 36.
    Buchler M (2006) Proc Natl Acad Sci 103:12285–12290CrossRefGoogle Scholar
  37. 37.
    Nelson DL, Cox MM (2005) Lehninger’s Principles of Biochemistry. W H Reeman and Company, New yorkGoogle Scholar
  38. 38.
    Szieberth D, Ferrari AM, Dong X (2010) Phys Chem Chem Phys 12:11033–11040CrossRefGoogle Scholar
  39. 39.
    Sowmiya M, Senthilkumar K (2015) Comput Mater Sci 104:124–129CrossRefGoogle Scholar
  40. 40.
    Kresse G, Hafner J (1993) Phys Rev B 47:558–561CrossRefGoogle Scholar
  41. 41.
    Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  42. 42.
    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  43. 43.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  44. 44.
    Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396CrossRefGoogle Scholar
  45. 45.
    Blochl PE, Jepsen O, Andersen OK (1994) Phys Rev B 49:16223–16233CrossRefGoogle Scholar
  46. 46.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  47. 47.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  48. 48.
    Gong XQ, Selloni A, Vittadini A (2006) J Phys Chem B 110:2804–2811CrossRefGoogle Scholar
  49. 49.
    Grimme S (2006) J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  50. 50.
    Feng J, Pandey RB, Berry RJ, Farmer BL, Naik RR, Heinz H (2011) Soft Matter 7:2113–2120CrossRefGoogle Scholar
  51. 51.
    Sanville E, Kenny SD, Smith R, Henkelman G (2007) J Comput Chem 28:899–908CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of PhysicsBharathiar UniversityCoimbatoreIndia

Personalised recommendations