Advertisement

One- and two-photon activity of diketopyrrolopyrrole-Zn-porphyrin conjugates: linear and quadratic density functional response theory applied to model systems

  • Md. Mehboob Alam
  • Chantal DanielEmail author
Regular Article
Part of the following topical collections:
  1. Health & Energy from the Sun: a Computational Perspective

Abstract

The present work, based on linear and quadratic response theories within the framework of time-dependent density functional theory, is devoted to the solvent phase one- and two-photon (TP) absorption properties of four dikeotpyrrolopyrrole (DPP)-substituted Zn-porphyrin complexes and their possible application as photosensitizers in photodynamic cancer therapy. We have also compared our results, wherever possible, with the available experimental data. Our analysis decisively confirms that although the reference compound has very low TP activity the other substituted complexes show a very large TP activity in the tissue penetration region, activity that gradually increases with the number of DPP ligands. We have explained the results by extensive analyses of the orbital excitations as well as the different TP tensor elements involved in the TP absorption process.

Keywords

Time-dependent density functional theory Two-photon absorption spectra Zinc porphyrins conjugates Charge transfer Optical linear and quadratic responses 

Notes

Acknowledgments

Md. Mehboob Alam gratefully acknowledges support from the Labex “Chimie des Systèmes Complexes” (ANR-10-LABX-0026_CSC). The authors are grateful to Pr Valérie Heitz and Dr Angélique Sour for valuable and stimulating discussions. The European actions COST perspect-H2O and CODEC are acknowledged. The quantum chemical calculations have been performed on the computer nodes of the LCQS, Strasbourg and thanks to the computer facilities of the High-Performance Computing (HPC) regional center of University of Strasbourg.

Supplementary material

214_2015_1780_MOESM1_ESM.docx (2.6 mb)
Supplementary material 1 (DOCX 2696 kb)

References

  1. 1.
    Drobizhev M, Stepanenko Y, Dzenis Y, Karotki A, Rebane A, Taylor PN, Anderson HL (2005) J Phys Chem B 109:7223CrossRefGoogle Scholar
  2. 2.
    Kim DY, Ahn TK, Kwon JH, Kim D, Ikeue T, Aratani N, Osuka A, Shigeiwa M, Maeda S (2005) J Phys Chem A 109:2996CrossRefGoogle Scholar
  3. 3.
    Drobishev M, Meng F, Rebane A, Stepanenko Y, Nickel E, Spangler CW (2006) J Phys Chem B 110:9802CrossRefGoogle Scholar
  4. 4.
    Drobizhev M, Stepanenko Y, Rebane A, Wilson CJ, Screen TEO, Anderson HL (2006) J Am Chem Soc 128:12432CrossRefGoogle Scholar
  5. 5.
    Ahn TK, Kim KS, Kim DY, Noh SB, Aratani N, Ikeda C, Osuka A, Kim D (2006) J Am Chem Soc 128:1700CrossRefGoogle Scholar
  6. 6.
    Yoon M-C, Noh SB, Tsuda A, Nakamura Y, Osuka A, Kim D (2007) J Am Chem Soc 129:10080CrossRefGoogle Scholar
  7. 7.
    Dy JT, Ogawa A, Satake A, Ishizumi A, Kobuke Y (2007) Chem Eur J 13:3491CrossRefGoogle Scholar
  8. 8.
    Nakamura Y, Jang SY, Tanaka T, Aratani N, Lim JM, Kim KS, Kim D, Osuka A (2008) Chem Eur J 14:8279CrossRefGoogle Scholar
  9. 9.
    Starkey JR, Rebane AK, Drobizhev MA, Meng F, Gong A, Elliott A, McInnermey K, Spangler CW (2008) Clin Cancer Res 14:6564CrossRefGoogle Scholar
  10. 10.
    Collins HA, Khurana M, Moriyama EH, Mariampillai A, Dahlstedt E, Balaz M, Kuimova MK, Drobizhev M, Yang Victor XD, Phillips D, Rebane A, Wilson BC, Anderson HL (2008) Nat Photonics 2:420CrossRefGoogle Scholar
  11. 11.
    Dahlstedt E, Collins HA, Balaz M, Kuimova MK, Khurana M, Wilson BC, Phillips D, Anderson HL (2009) Org Biomol Chem 7:897CrossRefGoogle Scholar
  12. 12.
    Kuimova MK, Collins HA, Balaz M, Dahlstedt E, Levitt JA, Sergent N, Suhling K, Drobizhev M, Makarov NS, Rebane A, Anderson HL, Phillips D (2009) Org Biomol Chem 7:889CrossRefGoogle Scholar
  13. 13.
    Ogawa K, Kobuke Y (2009) Org Biomol Chem 7:2241CrossRefGoogle Scholar
  14. 14.
    Morisue M, Ogawa K, Kamada K, Ohta K, Kobuke Y (2010) Chem Commun 46:2121CrossRefGoogle Scholar
  15. 15.
    Drouet S, Merhi A, Grelaud G, Cifuentes MP, Humphrey MG, Matczyszyn K, Samoc M, Toupet L, Paul-Roth CO, Paul F (2012) New J Chem 36:2192CrossRefGoogle Scholar
  16. 16.
    Kamada K, Hara C, Ogawa K, Ohta K, Kobuke Y (2012) Chem Commun 48:7988CrossRefGoogle Scholar
  17. 17.
    Ogawa K, Kobuke Y (2013) BioMed Res Int 2013:125658CrossRefGoogle Scholar
  18. 18.
    Kim P, Ham S, Oh J, Uoyama H, Watanabe H, Tagawa K, Uno H, Kim D (2013) Phys Chem Chem Phys 15:10612CrossRefGoogle Scholar
  19. 19.
    Sheng N, Liu D, Wu J, Gu B, Wang Z, Cui Y (2015) Dyes Pigm 119:116CrossRefGoogle Scholar
  20. 20.
    Liu X-J, Feng J-K, Ren A-M, Zhou X (2003) Chem Phys Lett 373:197CrossRefGoogle Scholar
  21. 21.
    Ray PC, Sainudeen Z (2006) J Phys Chem A 110:12342CrossRefGoogle Scholar
  22. 22.
    Rubio-Pons O, Luo Y, Ågren H (2006) J Chem Phys 124:094310CrossRefGoogle Scholar
  23. 23.
    Day PN, Nguyen KA, Pachter R (2008) J Chem Theory Comput 4:1094CrossRefGoogle Scholar
  24. 24.
    Jha PC, Minaev B, Ågren H (2008) J Chem Phys 128:074302CrossRefGoogle Scholar
  25. 25.
    Li W, Feng J, Ren A, Zhang X, Sun C (2009) Chin J Chem 27:1269CrossRefGoogle Scholar
  26. 26.
    Ohira S, Brédas JL (2009) J Mater Chem 19:7545CrossRefGoogle Scholar
  27. 27.
    Yuan-Hong S, Chuan-Kui W (2011) Chin Phys B 20:104204CrossRefGoogle Scholar
  28. 28.
    Pawlicki M, Collins HA, Denning RG, Anderson HL (2009) Angew Chem Int Ed 48:3244CrossRefGoogle Scholar
  29. 29.
    Senge MO, Fazekas M, Notaras EGA, Blau WJ, Zawadzka M, Locos OB, Ni Mhuircheartaigh EM (2007) Adv Mater 19:2737CrossRefGoogle Scholar
  30. 30.
    Schmitt J, Heitz V, Sour A, Bolze F, Ftouni H, Nicoud JF, Flamigni L, Ventura B (2015) Angew Chem Int Ed 54:169CrossRefGoogle Scholar
  31. 31.
    Nowak-Krol A, Grzybowski M, Romiszewski J, Drobizhev M, Wicks G, Chotkowski M, Rebane A, Gorecka E, Gryko DT (2013) Chem Commun 49:8368CrossRefGoogle Scholar
  32. 32.
    Göppert-Mayer M (1931) Ann Phys 401:273CrossRefGoogle Scholar
  33. 33.
    Kaiser W, Garrett CGB (1961) Phys Rev Lett 7:229CrossRefGoogle Scholar
  34. 34.
    McLachlan AD, Ball MA (1964) Rev Mod Phys 36:844CrossRefGoogle Scholar
  35. 35.
    Dalgarno A, Victor GA (1966) Proc R Soc Lond A291:285Google Scholar
  36. 36.
    Altick PL, Glassgold AE (1964) Phys Rev 133:A632CrossRefGoogle Scholar
  37. 37.
    Papadopoulos MG, Sdalej AJ, Leszczynski J (eds) (2006) Non-linear optical properties of matter. Springer, NetherlandsGoogle Scholar
  38. 38.
    Christiansen O, Koch H, Jørgensen P (1995) Chem Phys Lett 243:409CrossRefGoogle Scholar
  39. 39.
    Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910CrossRefGoogle Scholar
  40. 40.
    Koch H, Christiansen O, Jørgensen P, Sanchez de Merás A, Helgaker T (1997) J Chem Phys 106:1808CrossRefGoogle Scholar
  41. 41.
    Christiansen O, Koch H, Jørgensen P (1995) J Chem Phys 103:7429CrossRefGoogle Scholar
  42. 42.
    Van Gisbergen SJA, Snidjers JG, Baerends EJ (1995) J Chem Phys 103:9347CrossRefGoogle Scholar
  43. 43.
    Salek P, Vahtras O, Helgaker T, Ågren H (2002) J Chem Phys 117:9630CrossRefGoogle Scholar
  44. 44.
    Salek P, Vahtras O, Guo J, Luo Y, Helgaker T, Ågren H (2003) Chem Phys Lett 374:446CrossRefGoogle Scholar
  45. 45.
    Fetter AL, Walecka JD (1971) Quantum theory of many-particle systems. McGraw-Hill, New YorkGoogle Scholar
  46. 46.
    Olsen J, Jørgensen P, Helgaker T, Oddershede J (2005) J Phys Chem A 109:11618CrossRefGoogle Scholar
  47. 47.
    Schirmer J (1982) Phys Rev A 26:2395CrossRefGoogle Scholar
  48. 48.
    Knippenberg S, Rehn DR, Wormit M, Starcke JH, Rusakova IL, Trofinov AB, Dreuw A (2012) J Chem Phys 136:064107CrossRefGoogle Scholar
  49. 49.
    Paterson MJ, Christiansen O, Pawlowski F, Jørgensen P, Hättig C, Helgaker T, Salek P (2006) J Chem Phys 124:054322CrossRefGoogle Scholar
  50. 50.
    Kamarchik E, Krylov A (2011) J Phys Chem Lett 2:488CrossRefGoogle Scholar
  51. 51.
    Dreuw A, Polkehn MA, Binder R, Heckel A, Knippenberg S (2012) J Comput Chem 33:1797CrossRefGoogle Scholar
  52. 52.
    Alaraby Salem M, Brown A (2014) J Chem Theor Comput 10:3260CrossRefGoogle Scholar
  53. 53.
    Beerepoot MTP, Friese DH, Ruud K (2014) Phys Chem Chem Phys 16:5958CrossRefGoogle Scholar
  54. 54.
    Nanda KD, Krylov A (2015) J Chem Phys 142:064118CrossRefGoogle Scholar
  55. 55.
    Alam MM, Chattopadhyaya M, Chakrabarti S, Ruud K (2012) J Phys Chem Lett 3:961CrossRefGoogle Scholar
  56. 56.
    Bergendahl LT, Paterson MJ (2012) J Phys Chem Lett 116:11818CrossRefGoogle Scholar
  57. 57.
    Alam MM, Chattopadhyaya M, Chakrabarti S (2012) J Phys Chem A 116:11034CrossRefGoogle Scholar
  58. 58.
    Bergendahl LT, Paterson MJ (2013) RSC Adv 3:9247CrossRefGoogle Scholar
  59. 59.
    Arnbjerg J, Jiménez-Banzo A, Paterson MJ, Nonell S, Borrell JI, Christiansen O, Ogilby PR (2007) J Am Chem Soc 129:5188CrossRefGoogle Scholar
  60. 60.
    Graczyk A, Żurek J, Paterson MJ (2014) Photochem Photobiol 13:103CrossRefGoogle Scholar
  61. 61.
    Nielsen CBO, Sørensen HO, Kongsted J (2015) J Phys Chem A 119:1906CrossRefGoogle Scholar
  62. 62.
    Angeli AC, Bak KL, Bakken V, Bast R, Boman L, Christiansen O, Cimiraglia R, Coriani S, Dahle P, Dalskov EK, Ekstroem U, Enevoldsen T, Eriksen JJ, Ettenhuber P, Fernandez B, Ferrighi L, Fliegl H, Frediani L, Hald K, Halkier A, Haettig C, Heiberg H, Helgaker T, Hennum AC, Hettema H, Hjertenaes E, Hoest S, Hoeyvik I-M, Iozzi MF, Jansik B, Jensen HJA, Jonsson D, Joergensen P, Kauczor J, Kirpekar S, Kjaergaard T, Klopper W, Knecht S, Kobayashi R, Koch H, Kongsted J, Krapp A, Kristensen K, Ligabue A, Lutnaes OB, Melo JI, Mikkelsen KV, Myhre RH, Neiss C, Nielsen CB, Norman P, Olsen J, Olsen JMH, Osted A, Packer MJ, Pawlowski F, Pedersen TB, Provasi PF, Reine S, Rinkevicius Z, Ruden TA, Ruud K, Rybkin V, Salek P, Samson CCM, Sanchez de Meras A, Saue T, Sauer SPA, Schimmelpfennig B, Sneskov K, Steindal AH, Hvid KOS, Taylor PR, Teale AM, Tellgren EI, Tew DP, Thorvaldsen AJ, Thoegersen L, Vahtras O, Watson MA, Wilson DJD, Ziolkowski M, Aagren H (2013) The dalton quantum chemistry program system. WIREs Comput Mol Sci. doi: 10.1002/wcms.1172; Dalton, a molecular electronic structure program, release DALTON2013.4 (2014), see http://daltonprogram.org, Dalton2013.4K
  63. 63.
    Alam MM, Bolze F, Daniel C, Flamigni L, Gourlaouen C, Heitz V, Schmitt J, Sour A, Ventura B (in preparation)Google Scholar
  64. 64.
    Runge E, Gross EKU (1984) Phys Rev Lett 52:997CrossRefGoogle Scholar
  65. 65.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  66. 66.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623CrossRefGoogle Scholar
  67. 67.
    Yanai T, Twe DP, Handy NCA (2004) Chem Phys Lett 393:5CrossRefGoogle Scholar
  68. 68.
    Hilborn RC (1982) Am J Phys 50:982CrossRefGoogle Scholar
  69. 69.
    Peach MJG, Cohen AJ, Tozer DJ (2006) Phys Chem Chem Phys 8:4543CrossRefGoogle Scholar
  70. 70.
    Peach MJG, Sueur CRL, Ruud K, Guillaume M, Tozer DJ (2009) Phys Chem Chem Phys 11:4465CrossRefGoogle Scholar
  71. 71.
    Alam MM, Chattopadhyaya M, Chakrabarti S (2012) Phys Chem Chem Phys 14:1156CrossRefGoogle Scholar
  72. 72.
    Alam MM, Chattopadhyaya M, Chakrabarti RuudK (2013) Phys Chem Chem Phys 15:17570CrossRefGoogle Scholar
  73. 73.
    Alam MM (2014) Phys Chem Chem Phys 16:26342CrossRefGoogle Scholar
  74. 74.
    Shen YR (1984) The principles of nonlinear optics. Wiley, New York 23 Google Scholar
  75. 75.
    McClain WM (1971) J Chem Phys 55:2789CrossRefGoogle Scholar
  76. 76.
    Gouterman M (1961) J Mol Spectrosc 6:138CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratoire de Chimie Quantique, Institut de Chimie Strasbourg, CNRSUniversité de StrasbourgStrasbourg CedexFrance

Personalised recommendations