Advertisement

A theoretical analysis of the effects of electron-withdrawing substitutions on electronic structures and phosphorescent efficiency of a series of Ir(III) complexes with 2-phenylpyridine ligands

  • Xue-Feng Ren
  • Guo-Jun KangEmail author
  • Qiong-Qiong He
  • Chuan-Yue Zheng
  • Xiang-Kun RenEmail author
Regular Article

Abstract

A density functional theory and time-dependent density functional theory approaches were used to understand the structure–property relationships of a series of Ir(III) complexes Ir(x-NHC)(y-ppy)2 [where NHC = 2,3-dihydro-1-methyl-3-phenyl-1H-imidazole, ppy = 2-phenylpyridine, x = Cl, y = H (1a); x = Cl, y = Cl (1a-Cl); x = Cl, y = F (1a-F); x = Cl, y = CN (1a-CN); x = Cl, y = CF3 (1a-CF 3 ); x = F, y = CF3 (2-CF 3 )]. The investigations on the electronic structures in the ground and lowest triplet excited states, the frontier molecular orbitals, the absorption and emission spectra, as well as charge injection and transport of these Ir complexes provided a good understanding of the structure–property relationships. Furthermore, the full details of the metal character in the phosphorescent spectra(3MLCT %), triplet energy (E T1), the singlet–triplet splitting energy (ΔE S1–Tn), 3MLCT–3MC energy gap, as well as d orbitals splitting revealed that quantum yield was effectively enhanced by introducing CN and CF3 groups on the ppy ligands. The designed complexes 1-CN, 1-CF 3 , and 2-CF 3 are expected to be highly efficient phosphorescent materials in organic light-emitting diodes.

Keywords

Iridium complexes Density functional theory 2-Phenylpyridine 

Notes

Acknowledgments

Financial supports from NSFC (Nos. 21243006 and 51304193), the Basic Research Program of Jiangsu Province (No. BK20130172), the Fundamental Research Funds for the Central Universities (No. 2013QNA14). A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. We are grateful to the High Performance Computing Center of China University of Mining and Technology for the award of CPU hours to accomplish this work.

Supplementary material

214_2015_1773_MOESM1_ESM.doc (531 kb)
Supplementary material 1 (DOC 531 kb)

References

  1. 1.
    Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee HE, Adachi C, Burrows PE, Forrest SR, Thompson ME (2001) J Am Chem Soc 123:4304–4312CrossRefGoogle Scholar
  2. 2.
    Zhou G, Wong W-Y, Yao B, Xie Z, Wang L (2007) Angew Chem Int Ed 46:1149–1151CrossRefGoogle Scholar
  3. 3.
    Zhao YY, Gao HF, Wang XM, Qi HL (2015) Inorg Chem 54:1446–1453CrossRefGoogle Scholar
  4. 4.
    Hofbeck T, Yersin H (2010) Inorg Chem 49:9290–9299CrossRefGoogle Scholar
  5. 5.
    Kim DH, Cho NS, Oh HY, Yang JH, Jeon WS, Park JS, Suh MC, Kwon JH (2011) Adv Mater 23:2721–2726CrossRefGoogle Scholar
  6. 6.
    Tian N, Aulin YV, Lenkeit D, Pelz S, Mikhnenko OV, Blom PWM, Loi MA, Holder E (2010) Dalton Trans 39:8613–8615CrossRefGoogle Scholar
  7. 7.
    Finkenzeller WJ, Yersin H (2003) Chem Phys Lett 377:299–305CrossRefGoogle Scholar
  8. 8.
    Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Appl Phys Lett 75:4–6CrossRefGoogle Scholar
  9. 9.
    Sajoto T, Djurovich PI, Tamayo A, Yousufuddin M, Bau R, Thompson ME, Holmes RJ, Forrest SR (2005) Inorg Chem 44:7992–8003CrossRefGoogle Scholar
  10. 10.
    Wu Y, Wu SX, Li HB, Geng Y, Su ZM (2011) Dalton Trans 40:4480–4488CrossRefGoogle Scholar
  11. 11.
    Ma MS, Zou LY, Li Y, Ren AM, Feng JK (2015) Org Electron 22:180–190CrossRefGoogle Scholar
  12. 12.
    Ren XF, Kang G-J, Zhang S-F, Ren A-M, Wong W-Y, Zhou GJ, Liu Y-L (2015) J Photochem Photobiol A Chem 311:85–94CrossRefGoogle Scholar
  13. 13.
    Deaton JC, Young RH, Lenhard JR, Rajeswaran M, Huo S (2010) Inorg Chem 49:9151–9161CrossRefGoogle Scholar
  14. 14.
    Wang L, Wu Y, Geng Y, Wu J, Zhu DX, Su ZM (2014) J Phys Chem A 118:5058–5067CrossRefGoogle Scholar
  15. 15.
    Stringer BD, Quan LM, Barnard PJ, Wilson DJD, Hogan CF (2014) Organometallics 33:4860–4872CrossRefGoogle Scholar
  16. 16.
    Kang GJ, Ren XF, Bai SY (2015) J Organomet Chem 785:44–51CrossRefGoogle Scholar
  17. 17.
    Adamo C, Barone V (1998) J. Chem. Phys. 108:664–675CrossRefGoogle Scholar
  18. 18.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283CrossRefGoogle Scholar
  19. 19.
    Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298CrossRefGoogle Scholar
  20. 20.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310CrossRefGoogle Scholar
  21. 21.
    Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Compd Chem 33:580–592CrossRefGoogle Scholar
  22. 22.
    Zhao Y, Truhlar DG (2008) J Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  23. 23.
    Bark T, Thummel RP (2005) Inorg Chem 44:8733–8739CrossRefGoogle Scholar
  24. 24.
    Martin RL (2003) J Chem Phys 118:4775–4777CrossRefGoogle Scholar
  25. 25.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.04. Gaussian, Inc, WallingfordGoogle Scholar
  26. 26.
    You Y, Park SY (2009) Dalton Trans 8:1267–1282CrossRefGoogle Scholar
  27. 27.
    Siddique ZA, Yamanoto Y, Ohno T, Nozaki K (2003) Inorg Chem 42:6366–6378CrossRefGoogle Scholar
  28. 28.
    Turro N (1991) Modern molecular photochemistry. University Science Books, Palo AltoGoogle Scholar
  29. 29.
    Haneder S, Como ED, Feldmann J, Lupton JM, Lennartz C, Erk P, Fuchs E, Molt O, Münster I, Schildknecht C, Wagenblast G (2008) Adv Mater 20:3325–3330CrossRefGoogle Scholar
  30. 30.
    Minaev B, Baryshnikov G, Agren H (2014) Phys Chem Chem Phys 16:1719–1758CrossRefGoogle Scholar
  31. 31.
    Si YL, Sun XB, Liu YQ, Qu XC, Wang Y, Wu ZJ (2014) Dalton Trans 43:714–721CrossRefGoogle Scholar
  32. 32.
    Sprouse S, King KA, Spellane PJ, Watts RJ (1984) J Am Chem Soc 106:6647–6653CrossRefGoogle Scholar
  33. 33.
    Shang XH, Han DM, Zhan Q, Zhang G, Li DF (2014) Organometallics 33:3300–3308CrossRefGoogle Scholar
  34. 34.
    Kozhevnikov DN, Kozhevnikov VN, Shafikov MZ, Prokhorov AM, Bruce DW, Gareth JA (2011) Williams. Inorg Chem 50:3804–3815CrossRefGoogle Scholar
  35. 35.
    Burin AL, Ratner MA (1998) J. Chem. Phys. 109:6092–6102CrossRefGoogle Scholar
  36. 36.
    Yersin H, Finkenzeller WJ (2008) In: Yersin H (ed) Highly efficient OLEDs with phosphorescent materials. Wiley-VCH, Weinheim, pp 1–97Google Scholar
  37. 37.
    Tong GSM, Che CM (2009) Chem Eur J 15:7225–7237CrossRefGoogle Scholar
  38. 38.
    Uoyamal H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Nature 492:234–238CrossRefGoogle Scholar
  39. 39.
    Nakanotani H, Higuchi T, Furukawa T, Morimoto K, Numata M, Tanaka H, Sagara Y, Yasuda T, Adachi C (2014) Nat Commun 5:4016–4023CrossRefGoogle Scholar
  40. 40.
    Alary F, Heully JL, Bijeire L, Vicendo P (2007) Inorg Chem 46:3154–3165CrossRefGoogle Scholar
  41. 41.
    Marcus RA (1993) Rev Mod Phys 65:599–610CrossRefGoogle Scholar
  42. 42.
    Ren XF, Ren AM, Feng JK, Sun CC (2009) J Photochem Photobiol A Chem 203:92–99CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyChina University of Mining and TechnologyXuzhouChina
  2. 2.Low Carbon Energy InstituteChina University of Mining and TechnologyXuzhouChina

Personalised recommendations