Advertisement

Understanding the ring-opening, chelation and non-chelation reactions between nedaplatin and thiosulfate: a DFT study based on NBO, ETS-NOCV and QTAIM

  • Snehasis BanerjeeEmail author
Regular Article

Abstract

The current work investigates a DFT-based in silico study on the mechanism of reaction between the anticancer drug nedaplatin [Pt(NH3)2(Gly-κ2O,O′)] (Gly = –OCCH2COO–) and the rescue agent thiosulfate (S2O3 2−) in molar ratios 1:1 and 1:2, in neutral- and proton-assisted pathways. The first step produces stable (κS or κO) intermediates via ring opening of Gly. The second, rate-limiting step consists of three competing reactions: (1) κ2S,O-chelate formation by S2O3 2− or HS2O3 (2) Pt-bis(thiosulfate) formation by the elimination of Gly ligand and (3) Pt-bis(thiosulfate) formation by the elimination of one NH3 trans to sulfur owing to strong trans-labilizing thiosulfate ligand. Results show that non-chelation reaction involving uptake of the second thiosulfate is kinetically more favorable than the corresponding κ2S,O-chelate formation. Further, the kinetic barrier of NH3 loss reaction is found to be very close to that of Gly loss. However, in solution phase, the ammine loss reaction is slower than the glycolate loss. The possibility of the formation of four-membered binuclear μ-thiosulfate bridge [Pt2(μ-S2O3)2(NH3)4] has also been considered. The proposed reaction paths have been substantiated through computation of structural, thermodynamic and kinetic parameters involved in the gas and solution phase, and also by topological analysis based on quantum theory of atoms in molecules of Bader and the ETS-NOCV energy decomposition scheme.

Keywords

Nedaplatin Cisplatin DNA DFT Kinetic parameters Anticancer drug Thiosulfate 

Notes

Acknowledgments

The author is thankful to Professor A. K. Mukherjee for the encouragement and support and especially to Professor J.V. Burda, who helped a lot in this field. The author is grateful to Professor M. Mitoraj for valuable discussion. Helpful suggestions by colleagues Dr. P. K. Chattopadhyay and Dr. N. R. Sinha are also thankfully acknowledged. Finally, the author is also thankful to the reviewer for his thorough and helpful comments.

Supplementary material

214_2015_1772_MOESM1_ESM.pdf (2.3 mb)
Supplementary material 1 (PDF 2313 kb)

References

  1. 1.
    Kuwahara A, Yamamori M, Nishiguchi K et al (2009) Int J Med Sci 6:305–311CrossRefGoogle Scholar
  2. 2.
    Wheate NJ, Walker S, Craig GE, Oun R (2010) Dalton Trans 39:8113–8127CrossRefGoogle Scholar
  3. 3.
    Rosenberg L, Krigas Camp T (1965) Nature (London) 205:698–699CrossRefGoogle Scholar
  4. 4.
    Ozols RF (1992) Semin Oncol 19:85–89Google Scholar
  5. 5.
    Kobayashi H, Takemura Y, Miyachi H, Ogawa T (1991) Investig New Drugs 9:313–319CrossRefGoogle Scholar
  6. 6.
    Kelland LR (1993) Crit Rev Oncol Hematol 15:191–219CrossRefGoogle Scholar
  7. 7.
    Siddik ZH (2003) Oncogene 22:7265–7279CrossRefGoogle Scholar
  8. 8.
    Kelland L (2007) Nat Rev Cancer 7:573–584CrossRefGoogle Scholar
  9. 9.
    Zhu C, Raber J, Eriksson LA (2005) J Phys Chem B 109:12195–12205CrossRefGoogle Scholar
  10. 10.
    Chval Z, Sip M (2000) J Mol Struct (Theochem) 532:59–68CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Guo Z, You XZ (2001) J Am Chem Soc 123:9378–9387CrossRefGoogle Scholar
  12. 12.
    Costa LAS, Rocha WR, De Almeida WB, Santos HFD (2004) Chem Phys Lett 387:182–187CrossRefGoogle Scholar
  13. 13.
    Lopes JF, Rocha WR, Santos HFD, Almeida WB (2008) J Chem Phys 128:165103–165117CrossRefGoogle Scholar
  14. 14.
    Zimmermann T, Leszczynski J, Burda JV (2011) J Mol Model 17:2385–2593CrossRefGoogle Scholar
  15. 15.
    Pavelka M, Lucas MFA, Russo N (2007) Chem Eur J 13:10108–10116CrossRefGoogle Scholar
  16. 16.
    Burda JV, Zeizinger M, Leszczynski J (2004) J Chem Phys 15:1253–1262CrossRefGoogle Scholar
  17. 17.
    De Souza LA, Nogueira CAS, Lopes JF, Dos Santos HF, De Almeida WB (2013) J Inorg Biochem 129:71–83CrossRefGoogle Scholar
  18. 18.
    Lucas MF, Pavelka M, Alberto ME, Russo N (2009) J Phys Chem B 113:831–838CrossRefGoogle Scholar
  19. 19.
    Banerjee S, Mukherjee AK (2013) Inorg Chim Acta 400:130–141CrossRefGoogle Scholar
  20. 20.
    Ciancetta A, Coletti C, Marrone A, Re N (2012) Dalton Trans 41:12960–12969CrossRefGoogle Scholar
  21. 21.
    Beaty JA, Jones MM, Ma L (1992) Chem Res Toxicol 5:647–653CrossRefGoogle Scholar
  22. 22.
    Ivanov AI, Christodoulou J, Parkinson JA, Barnham KJ, Tucker A, Woodrow J, Sadler PJ (1998) J Biol Chem 273:14721–14730CrossRefGoogle Scholar
  23. 23.
    Barnham KJ, Djuran MI, Murdoch PS, Ranford JD, Sadler PJ (1996) Inorg Chem 35:1065–1072CrossRefGoogle Scholar
  24. 24.
    Lau JKC, Deubel DV (2005) Chem Eur J 11:2849–2855CrossRefGoogle Scholar
  25. 25.
    Reedijk J (1999) Chem Rev 99:2499–2510CrossRefGoogle Scholar
  26. 26.
    Bugarčić ŽD, Bogojeski J, Petrović B, Hochreuther S, van Eldik R (2012) Dalton Trans 41:12329–12345CrossRefGoogle Scholar
  27. 27.
    Lempers Edwin LM, Reedijk J (1990) Inorg Chem 29:217–222CrossRefGoogle Scholar
  28. 28.
    Deubel DV (2002) J Am Chem Soc 124:5834–5842CrossRefGoogle Scholar
  29. 29.
    Hofmann A, Jaganyi D, Munro OQ, Liehr GR, van Eldik R (2003) Inorg Chem 42:1688–1700CrossRefGoogle Scholar
  30. 30.
    Zimmermann T, Chval Z, Burda JV (2009) J Phys Chem B 113:3139–3150CrossRefGoogle Scholar
  31. 31.
    Zimmermann T, Zeizinger M, Burda JV (2005) J Inorg Biochem 99:2184–2196CrossRefGoogle Scholar
  32. 32.
    Nishimoto A, Zhang DY (2003) Sulfur Lett 26:171–180CrossRefGoogle Scholar
  33. 33.
    Trinapakul M, Kritayakornupong C, Tongraar A, Vchirawongkwin V (2013) Dalton Trans 42:10807–10817CrossRefGoogle Scholar
  34. 34.
    Steudel R, Steudel Y (2009) J Phys Chem A 113:9920–9933CrossRefGoogle Scholar
  35. 35.
    Shea M, Koziol JA, Howell SB (1984) Clin Pharmacol Ther 35:419–425CrossRefGoogle Scholar
  36. 36.
    Pfeifle CE, Howell SB, Felthouse RD, Woliver TB, Andrews PA, Markman M, Murphy MP (1985) J Clin Oncol 3:237–244Google Scholar
  37. 37.
    Jarvis IWH, Ottley CJ, Person DG, Tilby MJ, Veal GJ (2010) Cancer Res 70:3501CrossRefGoogle Scholar
  38. 38.
    Neuwelt EA, Brummett RE, Doolittle ND, Muldoon LL, Kroll RA, Pagel MA, Dojan R, Church V, Remsen LG, Bubalo JS (1998) J Pharmacol Exp Ther 286:77–84Google Scholar
  39. 39.
    Sooriyaarachchi M, Narendran A, Gailer J (2012) Metallomics 4:960–967CrossRefGoogle Scholar
  40. 40.
    Alberto ME, Lucas MFA, Pavelka M, Russo N (2009) J Phys Chem B 113:14473–14479CrossRefGoogle Scholar
  41. 41.
    Alberto ME, Butera V, Russo N (2011) Inorg Chem 50:6965–6971CrossRefGoogle Scholar
  42. 42.
    Nojini ZB, Yavari F, Bagherifar S (2012) J Mol Liq 166:53–61CrossRefGoogle Scholar
  43. 43.
    Wang X, Li H, Du X, Harris J, Guo Z, Sun H (2012) Chem Sci 3:3206–3215CrossRefGoogle Scholar
  44. 44.
    Farrell NP, De Almeida SG, Skov KA (1988) J Am Chem Soc 110:5018–5019CrossRefGoogle Scholar
  45. 45.
    Frisch MJ et al (2004) GAUSSIAN 09. Gaussian Inc, WallingfordGoogle Scholar
  46. 46.
    Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141CrossRefGoogle Scholar
  47. 47.
    Bergner A, Dolg M, Kuchle W, Stoll H, Preuss H (1993) Mol Phys 80:1431–1441CrossRefGoogle Scholar
  48. 48.
    Burda JV, Zeizinger M, Sponer J, Leszczynski JJ (2000) Chem Phys 113:2224–2232Google Scholar
  49. 49.
    Hratchian HP, Schlegel HB (2004) J Chem Phys 120:9918–9924CrossRefGoogle Scholar
  50. 50.
    Cossi PM, Barone V (2001) J Chem Phys 115:4708–4717CrossRefGoogle Scholar
  51. 51.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  52. 52.
    Glendening ED, Reed AE, Carpenter JE, Weinhold F (1990) NBO 3.0 Theoretical Chemistry Institute, University of Wisconsin, MadisonGoogle Scholar
  53. 53.
    Wertz DH (1980) J Am Chem Soc 102:5316–5322CrossRefGoogle Scholar
  54. 54.
    Abraham MH (1981) J Am Chem Soc 103:6742–6744CrossRefGoogle Scholar
  55. 55.
    te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca GC, van Gisbergen SJA, Snijders JG, Ziegler TJ (2001) Comput Chem 22:931–967CrossRefGoogle Scholar
  56. 56.
    van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597–4610CrossRefGoogle Scholar
  57. 57.
    Mitoraj MP, Michalak A, Ziegler T (2009) J Chem Theory Comput 5:962–975CrossRefGoogle Scholar
  58. 58.
    Ziegler T, Rauk A (1979) Inorg Chem 18:1755–1759CrossRefGoogle Scholar
  59. 59.
    Stocco GC, Venezia A (1977) Inorg Chim Acta 46:1–5CrossRefGoogle Scholar
  60. 60.
    Michalak A, Mitoraj M, Ziegler T (2008) J Phys Chem A 112:1933–1939CrossRefGoogle Scholar
  61. 61.
    Bader RFW (1990) In atoms in molecules: a quantum theory. Clarendon Press, OxfordGoogle Scholar
  62. 62.
    Lau JKC, Deubel DVJ (2006) Chem Theory Comput 2:103–106CrossRefGoogle Scholar
  63. 63.
    Grabowski SJ (2011) Chem Rev 111:2597–2625CrossRefGoogle Scholar
  64. 64.
    Chattaraj PK, Lee H, Parr RG (1991) J Am Chem Soc 113:1855–1856CrossRefGoogle Scholar
  65. 65.
    Quagliano JV, Schubert L (1952) Chem Rev 50:201–260CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of ChemistryGovernment College of Engineering and Leather TechnologySalt LakeIndia

Personalised recommendations