Coumarin-based donor–π–acceptor organic dyes for a dye-sensitized solar cell: photophysical properties and electron injection mechanism

  • Supawadee Namuangruk
  • Siriporn Jungsuttiwong
  • Nawee Kungwan
  • Vinich Promarak
  • Taweesak Sudyoadsuk
  • Bavornpon Jansang
  • Masahiro Ehara
Regular Article
Part of the following topical collections:
  1. Health & Energy from the Sun: a Computational Perspective

Abstract

The electronic structure and photophysical properties of five coumarin-based donor–π–acceptor (D–π–A)-type organic dyes for a dye-sensitized solar cell (DSSC) which were recently developed have been investigated using the time-dependent density functional theory and the symmetry-adapted cluster configuration interaction method. Theoretical calculations including the solvent effect in state-specific and linear-response scheme reproduced the experimental UV–Vis absorption spectra of these dyes satisfactorily. The π-spacers, thiophene and thiophene–phenylene mixed units, affect the planarity of the molecular structures which is relevant to the photophysical properties and charge polarization. Energy levels of the frontier orbitals and charge separation were analyzed, and the thiophene linker was found to be effective for the electron injection in DSSC. The adsorption of these dyes on the TiO2 anatase (101) surface and the electron injection mechanism were also investigated using a dye–(TiO2)38 cluster model employing PBE and TD-CAM-B3LYP calculations, respectively. The adsorption energies of these dyes were estimated to be ~14 kcal/mol, indicating strong adsorption of dye to a TiO2 surface by carboxylate group. The possible direct electron injection mechanism was suggested in the present coumarin-based D–π–A dyes in a dye–TiO2 interacting system.

Keywords

Coumarin Dye-sensitized solar cells DFT SAC-CI Donor–π-spacer–acceptor 

Supplementary material

214_2015_1769_MOESM1_ESM.pdf (830 kb)
Supplementary material 1 (PDF 829 kb)

References

  1. 1.
    O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740CrossRefGoogle Scholar
  2. 2.
    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663CrossRefGoogle Scholar
  3. 3.
    Chung I, Lee B, He J, Chang RPH, Kanatzidis MG (2012) All-solid-state dye-sensitized solar cells with high efficiency. Nature 485(7399):486–489CrossRefGoogle Scholar
  4. 4.
    Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2002) Molecular design of coumarin dyes for efficient eye-sensitized solar cells. J Phys Chem B 107(2):597–606CrossRefGoogle Scholar
  5. 5.
    Hara K, Wang Z-S, Sato T, Furube A, Katoh R, Sugihara H, Dan-oh Y, Kasada C, Shinpo A, Suga S (2005) Oligothiophene-containing coumarin dyes for efficient eye-sensitized solar cells. J Phys Chem B 109(32):15476–15482CrossRefGoogle Scholar
  6. 6.
    Li G, Jiang KJ, Li YF, Li SL, Yang LM (2008) Efficient structural modification of triphenylamine-based organic dyes for dye-sensitized solar cells. J Phys Chem C 112:11591–11599CrossRefGoogle Scholar
  7. 7.
    Wu W, Yang J, Hua J, Tang J, Zhang L, Long Y, Tian H (2010) Efficient and stable dye-sensitized solar cells based on phenothiazine sensitizers with thiophene units. J Mater Chem 20:1772–1779CrossRefGoogle Scholar
  8. 8.
    Mishra A, Fischer MKR, Bauerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed 48:2474–2499CrossRefGoogle Scholar
  9. 9.
    Rehm JM, McLendon GL, Nagasawa Y, Yoshihara K, Moser J, Grätzel M (1996) Femtosecond electron-transfer dynamics at a sensitizing dye-semiconductor (TiO2) interface. J Phys Chem 100(23):9577–9578CrossRefGoogle Scholar
  10. 10.
    Hara K, Sayama K, Ohga Y, Shinpo A, Suga S, Arakawa H (2001) A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chem Commun 6:569–570CrossRefGoogle Scholar
  11. 11.
    Wang ZS, Hara K, Dan-oh Y, Kasada C, Shinpo A, Suga S, Arakawa H, Sugihara H (2005) Photophysical and (photo)electrochemical properties of a coumarin dye. J Phys Chem B 109(9):3907–3914CrossRefGoogle Scholar
  12. 12.
    Hara K, Kurashige M, Dan-oh Y, Kasada C, Shinpo A, Suga S, Sayama K, Arakawa H (2003) Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New J Chem 27(5):783–785CrossRefGoogle Scholar
  13. 13.
    Fink RF, Seibt J, Engel V, Renz M, Kaupp M, Lochbrunner S, Zhao HM, Pfister J, Würthner F, Engels B (2008) Exciton trapping in π-conjugated materials: a quantum-chemistry-based protocol applied to perylene bisimide dye aggregates. J Am Chem Soc 130:12858–12859CrossRefGoogle Scholar
  14. 14.
    Tatay S, Haque SA, O’Regan B, Durrant JR, Verhees WJH, Kroon JM, Vidal-Ferran A, Gavina P, Palomares E (2007) Kinetic competition in liquid electrolyte and solid-state cyanine dye sensitized solar cells. J Mater Chem 17:3037–3044CrossRefGoogle Scholar
  15. 15.
    Angelis FD, Tilocca A, Sellon A (2004) Time-dependent DFT study of [Fe(CN)6]4− sensitization of TiO2 nanoparticles. J Am Chem Soc 126:15024–15025CrossRefGoogle Scholar
  16. 16.
    Jono R, Fujisawa J, Segawa H, Yamashita K (2011) Theoretical study of the surface complex between TiO2 and TCNQ showing interfacial charge-transfer transitions. J Phys Chem Lett 2:1167–1170CrossRefGoogle Scholar
  17. 17.
    Agrawal S, Dev P, English NJ, Thampi KR, MacElroy JMD (2012) A TD-DFT study of the effects of structural variations on the photochemistry of polyene dyes. Chem Sci 3:416–424CrossRefGoogle Scholar
  18. 18.
    Kungwan N, Khongpracha P, Namuangruk S, Meeprasert J, Chitpakdee C, Jungsuttiwong S, Promarak V (2014) Theoretical study of linker-type effect in carbazole–carbazole-based dyes on performances of dye-sensitized solar cells. Theor Chem Acc 133(8):1–14CrossRefGoogle Scholar
  19. 19.
    Namuangruk S, Meeprasert J, Jungsuttiwong S, Promarak V, Kungwan N (2014) Organic sensitizers with modified di(thiophen-2-yl)phenylamine donor units for dye-sensitized solar cells: a computational study. Theor Chem Acc 133(9):1–15CrossRefGoogle Scholar
  20. 20.
    Namuangruk S, Fukuda R, Ehara M, Meeprasert J, Khanasa T, Morada S, Kaewin T, Jungsuttiwong S, Sudyoadsuk T, Promarak V (2012) D–D–π–A type organic dyes for dye-sensitized solar cells with a potential for direct electron injection and a high extinction coefficient: synthesis, characterization, and theoretical investigation. J Phys Chem C 116(49):25653–25663CrossRefGoogle Scholar
  21. 21.
    Jungsuttiwong S, Yakhanthip T, Surakhot Y, Khunchalee J, Sudyoadsuk T, Promarak V, Kungwan N, Namuangruk S (2012) The effect of conjugated spacer on novel carbazole derivatives for dye-sensitized solar cells: density functional theory/time-dependent density functional theory study. J Comput Chem 33(17):1517–1523CrossRefGoogle Scholar
  22. 22.
    Sudyoadsuk T, Pansay S, Morada S, Rattanawan R, Namuangruk S, Kaewin T, Jungsuttiwong S, Promarak V (2013) Synthesis and characterization of D–D–π–A type organic dyes bearing carbazole–carbazole as a donor moiety (D–D) for efficient dye-sensitized solar cells. Eur J Org Chem 23:5051–5063CrossRefGoogle Scholar
  23. 23.
    Sirithip K, Prachumrak N, Rattanawan R, Keawin T, Sudyoadsuk T, Namuangruk S, Jungsuttiwong S, Promarak V (2015) Zinc–porphyrin dyes with different meso-aryl substituents for dye-sensitized solar cells: experimental and theoretical studies. Chem Asian J 10(4):882–893CrossRefGoogle Scholar
  24. 24.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  25. 25.
    Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  26. 26.
    Liu Z (2008) Theoretical studies of natural pigments relevant to dye-sensitized solar cells. J Mol Struct THEOCHEM 862(1–3):44–48CrossRefGoogle Scholar
  27. 27.
    Zhang X, Zhang JJ, Xia YY (2008) Molecular design of coumarin dyes with high efficiency in dye-sensitized solar cells. J Photochem Photobiol A 194(2–3):167–172CrossRefGoogle Scholar
  28. 28.
    Cai-Rong Z, Zi-Jiang L, Yu-Hong C, Hong-Shan C, You-Zhi W, Li-Hua Y (2009) DFT and TDDFT study on organic dye sensitizers D5, DST and DSS for solar cells. J Mol Struct THEOCHEM 899(1–3):86–93CrossRefGoogle Scholar
  29. 29.
    Ham HW, Kim YS (2010) Theoretical study of indoline dyes for dye-sensitized solar cells. Thin Solid Films 518(22):6558–6563CrossRefGoogle Scholar
  30. 30.
    Cai Z-L, Sendt K, Reimers JR (2002) Failure of density-functional theory and time-dependent density-functional theory for large extended pi systems. J Chem Phys 117(12):5543–5549CrossRefGoogle Scholar
  31. 31.
    Cai Z-L, Crossley MJ, Reimers JR, Kobayashi R, Amos RD (2006) Density functional theory for charge transfer: the nature of the N-bands of porphyrins and chlorophylls revealed through CAM-B3LYP, CASPT2, and SAC-CI calculations. J Phys Chem B 110(31):15624–15632CrossRefGoogle Scholar
  32. 32.
    Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41(2):157–167CrossRefGoogle Scholar
  33. 33.
    Iikuwa H, Tsuneda T, Yanai T, Hirao K (2001) A long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115:3540–3544CrossRefGoogle Scholar
  34. 34.
    Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120:8425–8433CrossRefGoogle Scholar
  35. 35.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57CrossRefGoogle Scholar
  36. 36.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110(13):6158–6170CrossRefGoogle Scholar
  37. 37.
    Labat F, Ciofini I, Hratchian HP, Frisch M, Raghavachari K, Adamo C (2009) First principles modeling of eosin-loaded ZnO films: a step toward the understanding of dye-sensitized solar cell performances. J Am Chem Soc 131:14290–14298CrossRefGoogle Scholar
  38. 38.
    Le Bahers T, Labat F, Pauporté T, Lainé PP, Ciofini I (2011) Theoretical procedure for optimizing dye-sensitized solar cells: from electronic structure to photovoltaic efficiency. J Am Chem Soc 133:8005–8013CrossRefGoogle Scholar
  39. 39.
    Namuangruk S, Sirithip K, Rattanatwan R, Keawin T, Kungwan N, Sudyodsuk T, Promarak V, Surakhot Y, Jungsuttiwong S (2014) Theoretical investigation of the charge-transfer properties in different meso-linked zinc porphyrins for highly efficient dye-sensitized solar cells. Dalton Trans 43(24):9166–9176CrossRefGoogle Scholar
  40. 40.
    Akasaka T, Nagase S (2002) Endofullerenes: A new family of carbon clusters. Kluwer Academic Publishers, Kluwer DordrechtCrossRefGoogle Scholar
  41. 41.
    Nakatsuji H (1978) Cluster expansion of the wavefunction. Excited states. Chem Phys Lett 59:362–364CrossRefGoogle Scholar
  42. 42.
    Nakatsuji H (1979) Cluster expansion of the wavefunction. Calculation of electron correlations in ground and excited states by SAC and SAC CI theories. Chem Phys Lett 67(329):334–342CrossRefGoogle Scholar
  43. 43.
    Ehara M, Hasegawa J, Nakatsuji H (2005) Theory and applications of computational chemistry, SAC-CI method applied to molecular spectroscopy: the first 40 years. Elsevier, OxfordGoogle Scholar
  44. 44.
    Fukuda R, Nakatsuji H (2008) Formulation and implementation of direct algorithm for the symmetry adapted cluster and symmetry adapted cluster-configuration interaction method. J Chem Phys 128:094105CrossRefGoogle Scholar
  45. 45.
    Saha B, Ehara M, Nakatsuji H (2007) Investigation of the electronic spectra and excited-state geometries of poly(para-phenylene vinylene) (PPV) and poly(para-phenylene) (PP) by the symmetry-adapted cluster configuration interaction (SAC-CI) method. J Phys Chem A 111:5473–5481CrossRefGoogle Scholar
  46. 46.
    Poolmee P, Ehara M, Nakatsuji H (2011) Photophysical properties and vibrational structure of ladder-type penta p-phenylene and carbazole derivatives based on SAC-CI calculations. Theor Chem Acc 130:161–173CrossRefGoogle Scholar
  47. 47.
    Promkatkaew M, Suramitr S, Monhaphda TK, Namuangrukd S, Ehara M, Hannongbua S (2009) Absorption and emission spectra of ultraviolet B blocking methoxy substituted cinnamates investigated using the symmetry-adapted cluster configuration interaction method. J Chem Phys 131:2243060(10)CrossRefGoogle Scholar
  48. 48.
    Fukuda R, Ehara M, Nakatsuji H (2010) Excited states and electronic spectra of extended tetraazaporphyrins. J Chem Phys 133(14):144316(16)CrossRefGoogle Scholar
  49. 49.
    Fukuda R, Ehara M (2012) Excited states and electronic spectra of annulated dinuclear free-base phthalocyanines: a theoretical study on near-infrared-absorbing dyes. J Chem Phys 136:114304(15)CrossRefGoogle Scholar
  50. 50.
    Ehara M, Fukuda R, Adamo C, Ciofini I (2013) Chemically intuitive indices for charge-transfer excitation based on SAC-CI and TD-DFT calculations. J Comput Chem 34(29):2498–2501CrossRefGoogle Scholar
  51. 51.
    Fukuda R, Ehara M (2014) Efficiency of perturbation-selection and its orbital dependence in the SAC-CI calculations for valence excitations of medium-size molecules. J Comput Chem 35(30):2163–2176CrossRefGoogle Scholar
  52. 52.
    Fukuda R, Ehara M (2014) An efficient computational scheme for electronic excitation spectra of molecules in solution using the symmetry-adapted cluster-configuration interaction method: the accuracy of excitation energies and intuitive charge-transfer indices. J Chem Phys 141(15):154104CrossRefGoogle Scholar
  53. 53.
    Adamo C, Le Bahers T, Savarese M, Wilbraham L, García G, Fukuda R, Ehara M, Rega N, Ciofini I (2015) Exploring excited states using time dependent density functional theory and density-based indexes. Coord Chem Rev 304–305:166–178CrossRefGoogle Scholar
  54. 54.
    Bousquet D, Fukuda R, Maitarad P, Jacquemin D, Ciofini I, Adamo C, Ehara M (2013) Excited-state geometries of heteroaromatic compounds: a comparative TD-DFT and SAC-CI study. J Chem Theor Comput 9(5):2368–2379CrossRefGoogle Scholar
  55. 55.
    Bousquet D, Fukuda R, Jacquemin D, Ciofini I, Adamo C, Ehara M (2014) Benchmark study on the triplet excited-state geometries and phosphorescence energies of heterocyclic compounds: comparison between TD-PBE0 and SAC-CI. J Chem Theor Comput 10(9):3969–3979CrossRefGoogle Scholar
  56. 56.
    Potjanasopa S (2011) Synthesis and characterization of organic materials for optoelectronic devices. Ph.D. thesis, Faculty of Science, Ubon Ratchathani UniversityGoogle Scholar
  57. 57.
    Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261CrossRefGoogle Scholar
  58. 58.
    Glendening ED, Reed AE, Carpenter JE, Weinhold F. NBO version 3.1Google Scholar
  59. 59.
    Dunning TH Jr (1970) Gaussian basis functions for sse in molecular calculations. I. Contraction of (9s5p) atomic basis sets for the first-row atoms. J Chem Phys 53:2823–2834CrossRefGoogle Scholar
  60. 60.
    Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24(6):669–681CrossRefGoogle Scholar
  61. 61.
    Takano Y, Houk KN (2004) Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J Chem Theor Comput 1(1):70–77CrossRefGoogle Scholar
  62. 62.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford, CTGoogle Scholar
  63. 63.
    Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92(1):508–517CrossRefGoogle Scholar
  64. 64.
    Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113(18):7756–7764CrossRefGoogle Scholar
  65. 65.
    Yakhanthip T, Jungsuttiwong S, Namuangruk S, Kungwan N, Promarak V, Sudyoadsuk T, Kochpradist P (2011) Theoretical investigation of novel carbazole-fluorene based D-π-A conjugated organic dyes as dye-sensitizer in dye-sensitized solar cells (DSCs). J Comput Chem 32(8):1568–1576CrossRefGoogle Scholar
  66. 66.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRefGoogle Scholar
  67. 67.
    Kusama H, Orita H, Sugihara H (2008) TiO2 band shift by nitrogen-containing heterocycles in dye-sensitized solar cells: a periodic density functional theory study. Langmuir 24(8):4411–4419CrossRefGoogle Scholar
  68. 68.
    Delley B (2002) Hardness conserving semilocal pseudopotentials. Phys Rev B 66(15):155125(8)CrossRefGoogle Scholar
  69. 69.
    Tsuneda T, Song JW, Suzuki S, Hirao K (2010) On Koopmans’ theorem in density functional theory. J Chem Phys 133:174101(9)CrossRefGoogle Scholar
  70. 70.
    Weng YX, Wang YQ, Asbury JB, Ghosh HN, Lian T (1999) Back electron transfer from TiO2 nanoparticles to FeIII(CN)63-: origin of non-single-exponential and particle size independent dynamics. J Phys Chem B 104(1):93–104CrossRefGoogle Scholar
  71. 71.
    Yang M, Thompson DW, Meyer GJ (2000) Dual pathways for TiO2 sensitization by Na2[Fe(bpy)(CN)4]. Inorg Chem 39(17):3738–3739CrossRefGoogle Scholar
  72. 72.
    Cossi M, Barone V (2000) Solvent effect on vertical electronic transitions by the polarizable continuum model. J Chem Phys 112(5):2427–2435CrossRefGoogle Scholar
  73. 73.
    Improta R (2006) A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J Chem Phys 125(5):054103(9)CrossRefGoogle Scholar
  74. 74.
    Cammi R, Mennucci B, Tomasi J (2000) Fast evaluation of geometries and properties of excited molecules in solution: a tamm-dancoff model with application to 4-dimethylaminobenzonitrile. J Phys Chem A 104(23):5631–5637CrossRefGoogle Scholar
  75. 75.
    Cossi M, Barone V (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115(10):4708–4717CrossRefGoogle Scholar
  76. 76.
    Cammi R, Fukuda R, Ehara M, Nakatsuji H (2010) Symmetry-adapted cluster and symmetry-adapted cluster-configuration interaction method in the polarizable continuum model: Theory of the solvent effect on the electronic excitation of molecules in solution. J Chem Phys 133(2):024104(24)CrossRefGoogle Scholar
  77. 77.
    Vittadini A, Selloni A, Rotzinger FP, Grätzel M (2000) Formic acid adsorption on dry and hydrated TiO2 anatase (101) surfaces by DFT calculations. J Phys Chem B 104(6):1300–1306CrossRefGoogle Scholar
  78. 78.
    Nazeeruddin MK, Humphry-Baker R, Liska P, Grätzel M (2003) Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J Phys Chem B 107(34):8981–8987CrossRefGoogle Scholar
  79. 79.
    Srinivas K, Yesudas K, Bhanuprakash K, Rao VJ, Giribabu L (2009) A combined experimental and computational investigation of anthracene based sensitizers for DSSC: comparison of cyanoacrylic and malonic acid electron withdrawing groups binding onto the TiO2 anatase (101) surface. J Phys Chem C 113(46):20117–20126CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Supawadee Namuangruk
    • 1
  • Siriporn Jungsuttiwong
    • 2
  • Nawee Kungwan
    • 3
  • Vinich Promarak
    • 4
  • Taweesak Sudyoadsuk
    • 4
  • Bavornpon Jansang
    • 5
  • Masahiro Ehara
    • 6
  1. 1.National Nanotechnology CenterNational Science and Technology Development AgencyKlong LuangThailand
  2. 2.Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Center for Organic Electronic and Alternative EnergyUbon Ratchathani UniversityUbon RatchathaniThailand
  3. 3.Department of Chemistry, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  4. 4.School of Molecular Science and EngineeringVidyasirimedhi Institute of Science and TechnologyWangchanThailand
  5. 5.PTT Research and Technology InstitutePTT Public Company LimitedWangnoiThailand
  6. 6.Institute for Molecular Science and Research Center for Computational ScienceOkazakiJapan

Personalised recommendations