Advertisement

Thermal properties of the orthorhombic CaSnO3 perovskite under pressure from ab initio quasi-harmonic calculations

  • J. MaulEmail author
  • I. M. G. Santos
  • J. R. Sambrano
  • A. Erba
Regular Article
Part of the following topical collections:
  1. CHITEL 2015 - Torino - Italy

Abstract

Structural, elastic and thermodynamic properties of the orthorhombic CaSnO3 perovskite are theoretically investigated at the ab initio level as a function of temperature and pressure. Harmonic and quasi-harmonic lattice dynamical calculations are performed with the Crystal program, by explicitly accounting for thermal expansion effects and by exploring the effect of several DFT functionals. The anisotropic, directional elastic response of the system is characterized up to 20 GPa of pressure. The thermal lattice expansion and elastic bulk modulus are described at simultaneous temperatures up to 2000 K and pressures up to 20 GPa. The Gibbs free energy of formation of CaSnO3 from CaO and SnO2 as a function of temperature is also addressed by means of fully converged phonon dispersion calculations on the three systems.

Keywords

Quasi-harmonic CaSnO Perovskite Pressure–temperature CRYSTAL program 

Notes

Acknowledgments

J.M. acknowledges the Brazilian scholarship program “Ciência sem Fronteiras” (Process Number 248425/2013-7/SWE). Furthermore, we are grateful for the programs PROCAD 2013/Proc. 88881.068492/2014-01 and FAPESP (2013/19289-0, 2013/07296-2) and also to the Center for Scientific Computing of the São Paulo State University (GridUNESP).

References

  1. 1.
    Peña MA, Fierro JLG (2001) Chem Rev 101(7):1981CrossRefGoogle Scholar
  2. 2.
    Royer S, Duprez D, Can F, Courtois X, Batiot-Dupeyrat C, Laassiri S, Alamdari H (2014) Chem Rev 114(20):10292CrossRefGoogle Scholar
  3. 3.
    Kubacka A, Fernández-García M, Colón G (2012) Chem Rev 112(3):1555CrossRefGoogle Scholar
  4. 4.
    Thalinger R, Opitz AK, Kogler S, Heggen M, Stroppa D, Schmidmair D, Tappert R, Fleig J, Klötzer B, Penner S (2015) J Phys Chem C 119(21):11739CrossRefGoogle Scholar
  5. 5.
    An L, Onishi H (2015) ACS Catal 5(6):3196CrossRefGoogle Scholar
  6. 6.
    Armstrong EN, Duncan KL, Wachsman ED (2013) Phys Chem Chem Phys 15:2298CrossRefGoogle Scholar
  7. 7.
    Yang Y, Íñiguez J, Mao AJ, Bellaiche L (2014) Phys Rev Lett 112:057202CrossRefGoogle Scholar
  8. 8.
    Misono M (2013) In: Misono M (ed) Heterogeneous catalysis of mixed oxides perovskite and heteropoly catalysts, studies in surface science and catalysis, vol 176. Elsevier, Amsterdam, pp 67–95CrossRefGoogle Scholar
  9. 9.
    Liu Z, Liu Y (2005) Mater Chem Phys 93(1):129CrossRefGoogle Scholar
  10. 10.
    Lei B, Li B, Zhang H, Li W (2007) Opt Mater 29(11):1491CrossRefGoogle Scholar
  11. 11.
    Lei B, Li B, Zhang H, Zhang L, Cong Y, Li W (2007) J Electrochem Soc 154(7):H623CrossRefGoogle Scholar
  12. 12.
    Fu Z, Li W, Du S, Yang HK, Jeong JH (2009) J Electrochem Soc 156(10):J308CrossRefGoogle Scholar
  13. 13.
    Ueda K, Shimizu Y (2010) Thin Solid Films 518(11):3063CrossRefGoogle Scholar
  14. 14.
    Chen XY, Ma C, Bao SP, Zhang HY (2010) J Alloys Compd 497(1–2):354CrossRefGoogle Scholar
  15. 15.
    Pang XL, Jia CH, Li GQ, Zhang WF (2011) Opt Mater 34(1):234CrossRefGoogle Scholar
  16. 16.
    Nakamura T, Shima M, Yasukawa M, Ueda K (2012) J Sol-Gel Sci Technol 61(2):362CrossRefGoogle Scholar
  17. 17.
    Liang Z, Zhang J, Sun J, Li X, Cheng L, Zhong H, Fu S, Tian Y, Chen B (2013) Phys B 412:36CrossRefGoogle Scholar
  18. 18.
    Zhang J, Chen B, Liang Z, Li X, Sun J, Cheng L, Zhong H (2014) J Alloys Compd 612:204CrossRefGoogle Scholar
  19. 19.
    Kim SD, Hwang KS, Hwangbo S (2013) Electron Mater Lett 9(4):405CrossRefGoogle Scholar
  20. 20.
    Hwang KS, Jeoni YS, Hwangbo S, Kim JT (2013) Ceram Int 39(7):8555CrossRefGoogle Scholar
  21. 21.
    Ueda K, Maeda T, Nakayashiki K, Goto K, Nakachi Y, Takashima H, Nomura K, Kajihara K, Hosono H (2008) Appl Phys Express 1(1):015003CrossRefGoogle Scholar
  22. 22.
    Karabulut Y, Ayvacıklı M, Canimoglu A, Garcia Guinea J, Kotan Z, Ekdal E, Akyuz O, Can N (2014) Spectrosc Lett 47(8):630CrossRefGoogle Scholar
  23. 23.
    Orsi Gordo V, Tuncer Arslanli Y, Canimoglu A, Ayvacikli M, Galvão Gobato Y, Henini M, Can N (2015) Appl Radiat Isotopes 99(0):69CrossRefGoogle Scholar
  24. 24.
    Canimoglu A, Garcia-Guinea J, Karabulut Y, Ayvacikli M, Jorge A, Can N (2015) Appl Radiat Isotopes 99:138CrossRefGoogle Scholar
  25. 25.
    Tateno S, Hirose K, Sata N, Ohishi Y (2010) Phys Earth Planet Inter 181(1–2):54CrossRefGoogle Scholar
  26. 26.
    Durand B, Loiseleur H (1978) J Appl Crystallogr 11(4):289CrossRefGoogle Scholar
  27. 27.
    Ropp R (2013) In: Ropp R (ed) Encyclopedia of the alkaline earth compounds. Elsevier, Amsterdam, pp 351–480CrossRefGoogle Scholar
  28. 28.
    Coffeen WW (1953) J Am Ceram Soc 36(7):207CrossRefGoogle Scholar
  29. 29.
    Hautier G, Miglio A, Waroquiers D, Rignanese GM, Gonze X (2014) Chem Mater 26(19):5447CrossRefGoogle Scholar
  30. 30.
    Mizoguchi H, Eng HW, Woodward PM (2004) Inorg Chem 43(5):1667CrossRefGoogle Scholar
  31. 31.
    Tarrida M, Larguem H, Madon M (2009) Phys Chem Miner 36(7):403CrossRefGoogle Scholar
  32. 32.
    Yangthaisong A (2013) Chin Phys Lett 30(7):077101CrossRefGoogle Scholar
  33. 33.
    Kung J, Angel RJ, Ross NL (2001) Phys Chem Miner 28(1):35CrossRefGoogle Scholar
  34. 34.
    Kung J, Lin YJ, Lin CM (2011) J Chem Phys 135(22):224507CrossRefGoogle Scholar
  35. 35.
    McMillan P, Ross N (1988) Phys Chem Miner 16(1):21CrossRefGoogle Scholar
  36. 36.
    Vegas A, Vallet-Regí M, González-Calbet JM, Alario-Franco MA (1986) Acta Crystallogr Sect B Struct Sci 42(2):167CrossRefGoogle Scholar
  37. 37.
    Cherrad D, Maouche D, Boudissa M, Reffas L, Louail M, Maamache M, Haddadi K, Medkour Y (2013) Phys B 429:95CrossRefGoogle Scholar
  38. 38.
    Moreira E, Barboza CA, Albuquerque EL, Fulco UL, Henriques JM, Araiújo AI (2015) J Phys Chem Solids 77:85CrossRefGoogle Scholar
  39. 39.
    Caracas R, Cohen RE (2005) Geophys Res Lett 32(6):L06303Google Scholar
  40. 40.
    Kuskov O, Galimzyanov R (1986) In: Saxena S (ed) Chemistry and physics of terrestrial planets advances in physical geochemistry, vol 6. Springer, New York, pp 310–361Google Scholar
  41. 41.
    Liebermann RC, Jones LEA, Ringwood AE (1977) Phys Earth Planet Inter 14(2):165CrossRefGoogle Scholar
  42. 42.
    Maul J, Erba A, Santos IMG, Sambrano JR, Dovesi R (2015) J Chem Phys 142(1):014505CrossRefGoogle Scholar
  43. 43.
    Dovesi R, Orlando R, Erba A, Zicovich-Wilson CM, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D’Arco Ph, Noël Y, Causá M, Rérat M, Kirtman B (2014) Int J Quantum Chem 114:1287CrossRefGoogle Scholar
  44. 44.
    Allen RE, De Wette FW (1969) Phys Rev 179:873CrossRefGoogle Scholar
  45. 45.
    Boyer LL (1979) Phys Rev Lett 42:584CrossRefGoogle Scholar
  46. 46.
    Erba A (2014) J Chem Phys 141:124115CrossRefGoogle Scholar
  47. 47.
    Erba A, Shahrokhi M, Moradian R, Dovesi R (2015) J Chem Phys 142:044114CrossRefGoogle Scholar
  48. 48.
    Erba A, Maul J, Demichelis R, Dovesi R (2015) Phys Chem Chem Phys 17:11670CrossRefGoogle Scholar
  49. 49.
    Erba A, Maul J, De La Pierre M, Dovesi R (2015) J Chem Phys 142:204502CrossRefGoogle Scholar
  50. 50.
    Erba A, Maul J, Itou M, Dovesi R, Sakurai Y (2015) Phys Rev Lett 115:117402CrossRefGoogle Scholar
  51. 51.
    Redfern SAT, Chen C, Kung J, Chaix-Pluchery O, Kreisel J, Salje EKH (2011) J Phys Condens Matter 23(42):425401CrossRefGoogle Scholar
  52. 52.
    Erba A, Mahmoud A, Orlando R, Dovesi R (2014) Phys Chem Miner 41:151CrossRefGoogle Scholar
  53. 53.
    Erba A, Mahmoud A, Belmonte D, Dovesi R (2014) J Chem Phys 140:124703CrossRefGoogle Scholar
  54. 54.
    Mahmoud A, Erba A, Doll K, Dovesi R (2014) J Chem Phys 140:234703CrossRefGoogle Scholar
  55. 55.
    Lacivita V, Erba A, Dovesi R, D’Arco Ph (2014) Phys Chem Chem Phys 16:15331CrossRefGoogle Scholar
  56. 56.
    Erba A, Navarrete-López AM, Lacivita V, D’Arco P, Zicovich-Wilson CM (2015) Phys Chem Chem Phys 17:2660CrossRefGoogle Scholar
  57. 57.
    Erba A, Ferrabone M, Orlando R, Dovesi R (2013) J Comput Chem 34:346CrossRefGoogle Scholar
  58. 58.
    Baima J, Ferrabone M, Orlando R, Erba A, Dovesi R (2015) Phys Chem Minerals. doi: 10.1007/s00269-015-0781-6 Google Scholar
  59. 59.
    Momma K, Izumi F (2011) J Appl Crystallogr 44(6):1272CrossRefGoogle Scholar
  60. 60.
    Dirac PAM (1930) Proc Cambridge Phil Soc 26:376CrossRefGoogle Scholar
  61. 61.
    Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200CrossRefGoogle Scholar
  62. 62.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  63. 63.
    Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Phys Rev Lett 100:136406CrossRefGoogle Scholar
  64. 64.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  65. 65.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  66. 66.
    Adamo C, Barone V (1999) J Chem Phys 110:6158CrossRefGoogle Scholar
  67. 67.
    Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) J Chem Phys 125(22):224106CrossRefGoogle Scholar
  68. 68.
    Henderson TM, Izmaylov AF, Scuseria GE, Savin A (2007) J Chem Phys 127(22):221103CrossRefGoogle Scholar
  69. 69.
    Henderson TM, Izmaylov AF, Scuseria GE, Savin A (2008) J Chem Theory Comput 4(8):1254CrossRefGoogle Scholar
  70. 70.
    Parlinski K, Li ZQ, Kawazoe Y (1997) Phys Rev Lett 78:4063CrossRefGoogle Scholar
  71. 71.
    Togo A, Oba F, Tanaka I (2008) Phys Rev B 78:134106CrossRefGoogle Scholar
  72. 72.
    Doll K (2010) Mol Phys 108(3–4):223CrossRefGoogle Scholar
  73. 73.
    Souza I, Martins J (1997) Phys Rev B 55:8733CrossRefGoogle Scholar
  74. 74.
    Perger WF, Criswell J, Civalleri B, Dovesi R (2009) Comput Phys Commun 180:1753CrossRefGoogle Scholar
  75. 75.
    Erba A, Ferrabone M, Baima J, Orlando R, Rérat M, Dovesi R (2013) J Chem Phys 138:054906CrossRefGoogle Scholar
  76. 76.
    Erba A, El-Kelany KE, Ferrero M, Baraille I, Rérat M (2013) Phys Rev B 88:035102CrossRefGoogle Scholar
  77. 77.
    Mahmoud A, Erba A, El-Kelany KE, Rérat M, Orlando R (2014) Phys Rev B 89:045103CrossRefGoogle Scholar
  78. 78.
    Erba A, Dovesi R (2013) Phys Rev B 88:045121CrossRefGoogle Scholar
  79. 79.
    El-Kelany KE, Erba A, Carbonnière P, Rérat M (2014) J Phys Cond Matter 26:205401CrossRefGoogle Scholar
  80. 80.
    Baima J, Erba A, Orlando R, Rérat M, Dovesi R (2013) J Phys Chem C 117:12864CrossRefGoogle Scholar
  81. 81.
    Lacivita V, Erba A, Noël Y, Orlando R, D’Arco Ph, Dovesi R (2013) J Chem Phys 138:214706CrossRefGoogle Scholar
  82. 82.
    Tan JC, Civalleri B, Erba A, Albanese E (2015) CrystEngComm 17:375CrossRefGoogle Scholar
  83. 83.
    El-Kelany KE, Carbonnière P, Erba A, Rérat M (2015) J Phys Chem C 119:8966CrossRefGoogle Scholar
  84. 84.
    Erba A, Ruggiero MT, Korter TM, Dovesi R (2015) J Chem Phys 143:144504CrossRefGoogle Scholar
  85. 85.
    Karki BB, Ackland GJ, Crain J (1997) J Phys Cond Matter 9(41):8579CrossRefGoogle Scholar
  86. 86.
    Wang J, Li J, Yip S, Phillpot S, Wolf D (1995) Phys Rev B 52:12627CrossRefGoogle Scholar
  87. 87.
    Karki BB, Stixrude L, Wentzcovitch RM (2001) Rev Geophys 39:507CrossRefGoogle Scholar
  88. 88.
    Wallace DC (1972) Thermodynamics of crystals. Wiley, New YorkGoogle Scholar
  89. 89.
    Wallace DC (1965) Rev Mod Phys 37:57CrossRefGoogle Scholar
  90. 90.
    Nye JF (1957) Physical properties of crystals. Oxford University Press, OxfordGoogle Scholar
  91. 91.
    Chen CJ, Kung J, Lin CM, Zhang M (2010) S.A.T. Redfern, ArXiv e-printsGoogle Scholar
  92. 92.
    Gurevich VM, Gavrichev KS, Polyakov VB, Clayton RN, Mineev SD, Hu G, Gorbunov VE, Golushina LN (2004) Thermochim Acta 421(1–2):179CrossRefGoogle Scholar
  93. 93.
    Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 k and 1 bar (105 pascals) pressure and at higher temperatures. Tech Rep B 1452, United States Geological SurveyGoogle Scholar
  94. 94.
    Tanaka Y (1942) Bull Chem Soc Jpn 17(2):70CrossRefGoogle Scholar
  95. 95.
    Lu Z, Liu J, Tang Y, Li Y (2004) Inorg Chem Commun 7(6):731CrossRefGoogle Scholar
  96. 96.
    Zhao J, Ross NL, Angel RJ (2004) Phys Chem Miner 31(5):299CrossRefGoogle Scholar
  97. 97.
    Shojaei S, Hassanzadeh-Tabrizi SA, Ghashang M (2014) Ceram Int 40(7(Part A)):9609CrossRefGoogle Scholar
  98. 98.
    Hill R (1963) J Mech Phys Solids 11:357CrossRefGoogle Scholar
  99. 99.
    Schneider BW, Liu W, Li B (2008) High Pressure Res 28(3):397CrossRefGoogle Scholar
  100. 100.
    Musgrave MJP (1970) Crystal acoustics. Holden-Day, San FranciscoGoogle Scholar
  101. 101.
    Auld BA (1973) Acoustic fields and waves in solids. Krieger Publishing Company, MalabarGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • J. Maul
    • 1
    • 2
    • 3
    Email author
  • I. M. G. Santos
    • 1
  • J. R. Sambrano
    • 2
  • A. Erba
    • 3
  1. 1.Laboratório de Combustíveis e Materiais, INCTMN-UFPBUniversidade Federal da ParaíbaJoão PessoaBrazil
  2. 2.Grupo de Modelagem e Simulação Molecular, INCTMN-UNESPSão Paulo State UniversityBauruBrazil
  3. 3.Dipartimento di ChimicaUniversità di Torino and NIS, Nanostructured Interfaces and Surfaces, Centre of ExcellenceTurinItaly

Personalised recommendations