Advertisement

Dibenzyl disulfide adsorption on Cu(111) surface: a DFT study

  • Mario Saavedra-Torres
  • Frederik TielensEmail author
  • Juan C. SantosEmail author
Regular Article
  • 291 Downloads

Abstract

The adsorption of dibenzyl disulfide (DBDS) on a Cu(111) surface model was investigated by using density functional calculations, considering energetic and electronic aspects. Several complexes were generated, where the bridge, hollow hcp, hollow fcc and top adsorption sites were considered. The results show that the Cu–S interaction guides the final complexes, and a secondary π–Cu weak interaction confers an extra stability. The complexes were grouped as physi- or chemisorption according to their adsorption energy applying a distortion decomposition model, with a preference by a double interaction of S with Cu (i.e., hollow hcp and bridge sites). A degree of disulfide bond dissociation was observed in the complexes, being correlated with adsorption energies. From an electronic aspect, it was found that the electronic flow from copper to DBDS occurs in the most stable complexes, checked with charge analysis. These results are in agreement with experimental revelations of copper corrosion on power transformers.

Keywords

Copper Dibenzyl disulfide (DBDS) DFT Adsorption 

Notes

Acknowledgments

The authors acknowledge the financial support by FONDECYT through the Project Number 1120785 and Universidad Andres Bello Grant DI-497-14/R. M.S.-T. thanks CONICYT for a Ph.D. scholarship and Universidad Andres Bello for support through grant DI40/12-I. F.T. thanks FONDECYT for several appointments as Invited Professor (2013 and 2015).

References

  1. 1.
    Ulman A (1996) Chem Rev 96:1533–1554CrossRefGoogle Scholar
  2. 2.
    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Chem Rev 105:1103–1169CrossRefGoogle Scholar
  3. 3.
    Vericat C, Vela ME, Benitez G, Carro P, Salvarezza RC (2010) Chem Soc Rev 39:1805–1834CrossRefGoogle Scholar
  4. 4.
    Cometto FP, Paredes-Olivera P, Macagno VA, Patrito EM (2005) J Phys Chem B 109:21737–21748CrossRefGoogle Scholar
  5. 5.
    Gronbeck H (2010) J Phys Chem C 114:15973–15978CrossRefGoogle Scholar
  6. 6.
    Laibinis PE, Whitesides GM, Allara DL, Tao YT, Parikh AN, Nuzzo RG (1991) J Am Chem Soc 113:7152–7167CrossRefGoogle Scholar
  7. 7.
    Kacprzak KA, Lopez-Acevedo O, Hakkinen H, Gronbeck H (2010) J Phys Chem C 114:13571–13576CrossRefGoogle Scholar
  8. 8.
    Fonticelli MH, Benitez G, Carro P, Azzaroni O, Salvarezza RC, Gonzalez S, Torres D, Illas F (2008) J Phys Chem C 112:4557–4563CrossRefGoogle Scholar
  9. 9.
    Luque NB, Santos E, Andres J, Tielens F (2011) Langmuir 27:14514–14521CrossRefGoogle Scholar
  10. 10.
    Sawaguchi T, Sato Y, Mizutani F (2001) J Electroanal Chem 496:50–60CrossRefGoogle Scholar
  11. 11.
    Woodruff DP (2007) Appl Surf Sci 254:76–81CrossRefGoogle Scholar
  12. 12.
    Woodruff DP (2008) Phys Chem Chem Phys 10:7211–7221CrossRefGoogle Scholar
  13. 13.
    Tielens F, Costa D, Humblot V, Pradier CM (2008) J Phys Chem C 112:182–190CrossRefGoogle Scholar
  14. 14.
    Tielens F, Santos E (2010) J Phys Chem C 114:9444–9452CrossRefGoogle Scholar
  15. 15.
    Doneux T, Tielens F, Geerlings P, Buess-Herman C (2006) J Phys Chem A 110:11346–11352CrossRefGoogle Scholar
  16. 16.
    Andreoni W, Curioni A, Gronbeck H (2000) Int J Quantum Chem 80:598–608CrossRefGoogle Scholar
  17. 17.
    Cometto FP, Macagno VA, Paredes-Olivera P, Patrito EM, Ascolani H, Zampieri G (2010) J Phys Chem C 114:10183–10194CrossRefGoogle Scholar
  18. 18.
    Di Felice R, Selloni A (2004) J Chem Phys 120:4906–4914CrossRefGoogle Scholar
  19. 19.
    Gronbeck H, Curioni A, Andreoni W (2000) J Am Chem Soc 122:3839–3842CrossRefGoogle Scholar
  20. 20.
    Humblot V, Tielens F, Luque NB, Hampartsoumian H, Methivier C, Pradier C-M (2014) Langmuir 30:203–212CrossRefGoogle Scholar
  21. 21.
    Naitabdi A, Humblot V (2010) Appl Phys Lett 97:223112CrossRefGoogle Scholar
  22. 22.
    Méthivier C, Humblot V, Pradier C-M (2015) Surf Sci 632:88–92CrossRefGoogle Scholar
  23. 23.
    Schiffrin A, Riemann A, Auwarter W, Pennec Y, Weber-Bargioni A, Cvetko D, Cossaro A, Morgante A, Barth JV (2007) Proc Natl Acad Sci USA 104:5279–5284CrossRefGoogle Scholar
  24. 24.
    Schiffrin A, Reichert J, Pennec Y, Auwaerter W, Weber-Bargioni A, Marschall M, Dell’Angela M, Cvetko D, Bavdek G, Cossaro A, Morgante A, Barth JV (2009) J Phys Chem C 113:12101–12108CrossRefGoogle Scholar
  25. 25.
    De Renzi V, Lavagnino L, Corradini V, Biagi R, Canepa M, del Pennino U (2008) J Phys Chem C 112:14439–14445CrossRefGoogle Scholar
  26. 26.
    Di Felice R, Selloni A, Molinari E (2003) J Phys Chem B 107:1151–1156CrossRefGoogle Scholar
  27. 27.
    Gonella G, Terreni S, Cvetko D, Cossaro A, Mattera L, Cavalleri O, Rolandi R, Morgante A, Floreano L, Canepa M (2005) J Phys Chem B 109:18003–18009CrossRefGoogle Scholar
  28. 28.
    Hoffling B, Ortmann F, Hannewald K, Bechstedt F (2010) Adsorption of cysteine on the Au(110)-surface: a density functional theory study. Springer, BerlinGoogle Scholar
  29. 29.
    Fischer S, Papageorgiou AC, Marschall M, Reichert J, Diller K, Klappenberger F, Allegretti F, Nefedov A, Woell C, Barth JV (2012) J Phys Chem C 116:20356–20362CrossRefGoogle Scholar
  30. 30.
    Luque NB, Santos E (2012) Langmuir 28:11472–11480CrossRefGoogle Scholar
  31. 31.
    Santos E, Avalle L, Poetting K, Velez P, Jones H (2008) Electrochim Acta 53:6807–6817CrossRefGoogle Scholar
  32. 32.
    Santos E, Avalle LB, Scurtu R, Jones H (2007) Chem Phys 342:236–244CrossRefGoogle Scholar
  33. 33.
    Marti EM, Methivier C, Pradier CM (2004) Langmuir 20:10223–10230CrossRefGoogle Scholar
  34. 34.
    Rieley H, Kendall GK, Chan A, Jones RG, Ludecke J, Woodruff DP, Cowie BCC (1997) Surf Sci 392:143–152CrossRefGoogle Scholar
  35. 35.
    Fan X-L, Liu Y, Ran R-X, Lau W-M (2013) J Phys Chem C 117:6587–6593CrossRefGoogle Scholar
  36. 36.
    Barlow SM, Raval R (2003) Surf Sci Rep 50:201–341CrossRefGoogle Scholar
  37. 37.
    Tumiatti V, Maina R, Scatiggio , Pompili M, Bartnikas R (2008) In: Conference Record of the 2008 IEEE International Symposium on Electrical Insulation, pp 284–286Google Scholar
  38. 38.
    Lukic JM, Milosavljevic SB, Orlovic AM (2010) Ind Eng Chem Res 49:9600–9608CrossRefGoogle Scholar
  39. 39.
    Toyama S, Tanimura J, Yamada N, Nagao E, Amimoto T (2009) IEEE Trans Dielectr Electr Insul 16:509–515CrossRefGoogle Scholar
  40. 40.
    Ahmed Khan F, Sundara Rajan J, Ansari MZA, Asra PS (2012) In: 2012 International Conference on Advances in Power Conversion and Energy Technologies (APCET), pp 1–4Google Scholar
  41. 41.
    Oweimreen GA, Jaber AMY, Abulkibash AM, Mehanna NA (2012) IEEE Trans Dielectr Electr Insul 19:1962–1970CrossRefGoogle Scholar
  42. 42.
    Maina R, Tumiatti V, Pompili M, Bartnikas R (2009) IEEE Trans Dielectr Electr Insul 16:1655–1663CrossRefGoogle Scholar
  43. 43.
    Tielens F, Humblot V, Pradier C-M (2008) Int J Quantum Chem 108:1792–1795CrossRefGoogle Scholar
  44. 44.
    Tielens F, Humblot V, Pradier CM, Calatayud M, Illas F (2009) Langmuir 25:9980–9985CrossRefGoogle Scholar
  45. 45.
    Tielens F, Santos E (2010) J Phys Chem C 114:9444–9452CrossRefGoogle Scholar
  46. 46.
    Kresse G, Hafner J (1993) Phys Rev B 47:558–561CrossRefGoogle Scholar
  47. 47.
    Kresse G, Hafner J (1994) Phys Rev B 49:14251–14269CrossRefGoogle Scholar
  48. 48.
    Blochl PE (1994) Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  49. 49.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  50. 50.
    Hammer B, Hansen LB, Norskov JK (1999) Phys Rev B 59:7413–7421CrossRefGoogle Scholar
  51. 51.
    Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396–1396CrossRefGoogle Scholar
  52. 52.
    Straumanis ME, Yu LS (1969) Acta Crystallogr Sect A 25:676–682CrossRefGoogle Scholar
  53. 53.
    Gattinoni C, Michaelides A (2015) Faraday Discuss 180:439–458CrossRefGoogle Scholar
  54. 54.
    Grimme S (2006) J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  55. 55.
    Almora-Barrios N, Carchini G, Blonski P, Lopez N (2014) J Chem Theory Comput 10:5002–5009CrossRefGoogle Scholar
  56. 56.
    Klimes J, Michaelides A (2012) J Chem Phys 137:120901CrossRefGoogle Scholar
  57. 57.
    Ferral A, Patrito EM, Paredes-Olivera P (2006) J Phys Chem B 110:17050–17062CrossRefGoogle Scholar
  58. 58.
    Crutcher ER, Warner K, Northwest M, electric-connectionco.com
  59. 59.
    Scaranto J, Mallia G, Harrison NM (2011) Comput Mater Sci 50:2080–2086CrossRefGoogle Scholar
  60. 60.
    Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:354–360CrossRefGoogle Scholar
  61. 61.
    Tang W, Sanville E, Henkelman G (2009) J Phys: Condens Matter 21:084204Google Scholar
  62. 62.
    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397CrossRefGoogle Scholar
  63. 63.
    Savin A, Becke AD, Flad J, Nesper R, Preuss H, von Schnering HG (1991) Angew Chem Int Ed Engl 30:409–412CrossRefGoogle Scholar
  64. 64.
    Savin A, Jepsen O, Flad J, Andersen OK, Preuss H, von Schnering HG (1992) Angew Chem Int Ed Engl 31:187–188CrossRefGoogle Scholar
  65. 65.
    Silvi B, Savin A (1994) Nature 371:683–686CrossRefGoogle Scholar
  66. 66.
    Silvi B (2002) J Mol Struct 614:3–10CrossRefGoogle Scholar
  67. 67.
    Melin J, Fuentealba P (2003) Int J Quantum Chem 92:381–390CrossRefGoogle Scholar
  68. 68.
    Fuentealba P, Chamorro E, Santos JC (2007) In: Toro-Labbe A (ed) Theoretical aspects of chemical reactivity, vol 19, pp 57–85Google Scholar
  69. 69.
    Santos JC, Andres J, Aizman A, Fuentealba P, Polo V (2005) J Phys Chem A 109:3687–3693CrossRefGoogle Scholar
  70. 70.
    Santos JC, Tiznado W, Contreras R, Fuentealba P (2004) J Chem Phys 120:1670–1673CrossRefGoogle Scholar
  71. 71.
    Saavedra-Torres M, Jaque P, Tielens F, Santos JC (2015) Theoret Chem Acc 134:73CrossRefGoogle Scholar
  72. 72.
    Bedford E, Humblot V, Méthivier C, Pradier CM, Gu F, Tielens F, Boujday S (2015) Chem Eur 21:14555–14561CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Departamento de Ciencias Químicas, Facultad de ciencias exactasUniversidad Andres BelloSantiagoChile
  2. 2.Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de ParisParis Cedex 05France

Personalised recommendations