Theoretical Chemistry Accounts

, 134:150 | Cite as

Negative solvatochromism of push–pull biphenyl compounds: a theoretical study

  • Suci Meng
  • Stefano Caprasecca
  • Ciro Achille Guido
  • Sandro Jurinovich
  • Benedetta Mennucci
Regular Article


We have investigated the negative solvatochromism observed for 4-(phenyloxido)-N-methylpyridinium in solvents of varying polarity using a hierarchy of solvation models (continuum, discrete, and mixed) combined with a (TD)DFT description. Overall, the significant hypsochromic shift measured in the experiments is reproduced qualitatively and quantitatively through calculations. More in detail, the role played by the solvent in tuning the spectral properties of POMP has been correlated with geometrical and electronic effects, and the ππ aggregation effects of POMP have been shown to be important in solvents of low and medium polarity.


Hypsochromic shift Zwitterionic compounds Solvation model TD-DFT Molecular dynamics QM/MM 



S.M. acknowledges the National Natural Science Foundation of China (Grant No. 21103073), the China Postdoctoral Science Foundation (Grant No. 2013T60500), and the Foundation of Jiangsu University (Grant No. 08JDG037). S.C., C.A.G., S.J., and B.M. acknowledge the European Research Council (ERC) for financial support in the framework of the starting Grant (EnLight-277755).

Supplementary material

214_2015_1754_MOESM1_ESM.pdf (354 kb)
Optimized geometries of POMP in CCl4, CHCl3, CH2Cl2, (CH3)2CO, DMSO, and H2O using PCM method at the B3LYP/6-31+G** level (Table S1); optimized geometries of isolated POMP and the supermolecular clusters with 1–4 water molecules in aqueous solution within the PCM framework using B3LYP/6-31+G** (Table S2); evolution of the interaction potentials of POMP–H2O and H2O–H2O dimers as a function of the intermolecular distance, r. The data are obtained from MP2/6-31+G**, B3LYP/6-31+G**, M06-2X/6-31+G** calculations, and PCFF results with PCFF, ESP, NBO, as well as Mulliken partial charges, respectively (Figure S1); the geometrical structures and excitation energies of supermolecule clusters with different size (Figure S2); RDFs for oxygen atoms in POMP to hydrogen atoms in DMSO solution and probability distributions of CH–O angle of POMP in DMSO solution within the first solvation shell (Figure S3); radial distribution functions for oxygen atoms in POMP dimer to hydrogen atom in acetone solution and probability distributions of O–H–C angle of POMP dimer in acetone solution within the first solvation shell (Figure S4); probability distributions of solvent coordination number and three-dimensional probability distributions of solvent molecules involving CH–O hydrogen bonding interactions of O1 and O2 atoms of dimeric POMPs in acetone solution within the first solvation shell (Figure S5) (PDF 353 kb)


  1. 1.
    Boeglin A, Fort A (2002) Geometrical structure and nonlinear optical response of a zwitterionic push–pull biphenyl compound. Chem Phys 282:353–360CrossRefGoogle Scholar
  2. 2.
    Reichardt C (2004) Pyridinium N-phenolate betaine dyes as empirical indicators of solvent polarity: some new findings. Pure Appl Chem 76:1903–1919CrossRefGoogle Scholar
  3. 3.
    Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358CrossRefGoogle Scholar
  4. 4.
    Reichardt C, Che D, Heckenkemper G, Schäfer G (2001) Syntheses and UV/Vis-spectroscopic properties of hydrophilic 2-, 3-, and 4-pyridyl-substituted solvatochromic and halochromic pyridinium N-phenolate betaine dyes as new empirical solvent polarity indicators. Eur J Org Chem 2001:2343–2361CrossRefGoogle Scholar
  5. 5.
    Zhu W, Jiang Y (2000) Molecular structures and non-linear optical properties of donor–acceptor quinoid-type molecules. Phys Chem Chem Phys 2:47–52CrossRefGoogle Scholar
  6. 6.
    Delgado MCR, Hernández V, Casado J, López Navarrete JT, Raimundo JM, Blanchard P, Rancali J (2003) Vibrational and quantum-chemical study of push–pull chromophores for second-order nonlinear optics from rigidified thiophene-based π-conjugating spacers. Chem Eur J 9:3670–3682CrossRefGoogle Scholar
  7. 7.
    Casado J, Hernández V, Kim OK, Lehn JM, López Navarrete JT, Ledesma SD, Ortiz RP, Delgado MCR, Vida Y, Pérez-Inestrosa E (2004) Vibrational and quantum-chemical study of nonlinear optical chromophores containing dithienothiophene as the electron relay. Chem Eur J 10:3805–3816CrossRefGoogle Scholar
  8. 8.
    Ortí E, Viruela PM, Viruela R, Effenberger F, Hernández V, López Navarrete JT (2005) Raman and theoretical study of the solvent effects on the sizable intramolecular charge transfer in the push–pull 5-(dimethylamino)-5′-nitro-2,2′-bithiophene. J Phys Chem A 109:8724–8731CrossRefGoogle Scholar
  9. 9.
    Meier H, Mühling B, Kolshorn H (2004) Red- and blue-shifts in oligo(1,4-phenyleneethynylene)s having terminal donor–acceptor substitutions. Eur J Org Chem 2004:1033–1042CrossRefGoogle Scholar
  10. 10.
    Runser C, Fort A, Barzoukas M, Combellas C, Suba C, Thiébault A, Graff R, Kintzinger JP (1995) Solvent effect on the intramolecular charge transfer of zwitterions. Structures and quadratic hyperpolarizabilities. Chem Phys 193:309–319CrossRefGoogle Scholar
  11. 11.
    Diemer V, Chaumeil H, Defoin A, Fort A, Boeglin A, Carré C (2006) Syntheses of sterically hindered pyridinium phenoxides as model compounds in nonlinear optics. Eur J Org Chem 2006:2727–2738CrossRefGoogle Scholar
  12. 12.
    Morley JO, Padfield J (2002) Experimental and computational studies on the solvatochromism and thermochromism of 4-pyridiniophenolates. J Chem Soc Perkin Trans 2:1698–1707CrossRefGoogle Scholar
  13. 13.
    Diemer V, Chaumeil H, Defoin A, Jatrice P, Carré C (2005) Synthesis of 4-[N-methyl-4-pyridinio]-phenolate (POMP) and negative solvatochromism of this model molecule in view of nonlinear optical applications. Tetrahedron Lett 46:4737–4740CrossRefGoogle Scholar
  14. 14.
    Marder RS, Perry JW, Bourhill G, Gorman CB, Tiemann BG, Mansour K (1993) Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules. Science 261:186–189CrossRefGoogle Scholar
  15. 15.
    Brédas JL (1985) Relationship between band gap and bond length alternation in organic conjugated polymers. J Chem Phys 82:3808–3811CrossRefGoogle Scholar
  16. 16.
    Albert IDL, Marks TJ, Ratner MA (1996) Rational design of molecules with large hyperpolarizabilities. Electric field, solvent polarity, and bond length alternation effects on merocyanine dye linear and nonlinear optical properties. J Phys Chem 100:9714–9725CrossRefGoogle Scholar
  17. 17.
    Pati SK, Marks TJ, Ratner MA (2001) Conformationally tuned large two-photon absorption cross sections in simple molecular chromophores. J Am Chem Soc 123:7287–7291CrossRefGoogle Scholar
  18. 18.
    Fabian J, Rosquete GA, Montero-Cabrera LA (1999) Single configuration interaction study on conjugated betainic chromophores based on DFT optimized geometries. J Mol Struct (THEOCHEM) 469:163–176CrossRefGoogle Scholar
  19. 19.
    Mennucci B (2013) Modeling environment effects on spectroscopies through QM/classical models. Phys Chem Chem Phys 15:6583–6594CrossRefGoogle Scholar
  20. 20.
    Mennucci B, Cappelli C, Guido CA, Cammi R, Tomasi J (2009) Structures and properties of electronically excited chromophores in solution from the polarizable continuum model coupled to the time-dependent density functional theory. J Phys Chem A 113:3009–3020CrossRefGoogle Scholar
  21. 21.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093CrossRefGoogle Scholar
  22. 22.
    Orozco M, Luque FJ (2000) Theoretical methods for the description of the solvent effect in biomolecular systems. Chem Rev 100:4187–4225CrossRefGoogle Scholar
  23. 23.
    Cramer CJ, Truhlar DG (1999) Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem Rev 99:2161–2200CrossRefGoogle Scholar
  24. 24.
    Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681CrossRefGoogle Scholar
  25. 25.
    Zeng J, Craw JS, Hush NS, Reimers JR (1993) Solvent effects on molecular spectra. 1. Normal pressure and temperature Monte Carlo simulations of the structure of dilute pyrimidine in water. J Chem Phys 99:1482–1495CrossRefGoogle Scholar
  26. 26.
    Zeng J, Hush NS, Reimers JR (1996) Solvent effects on molecular and ionic spectra. 7. Modeling the absorption and electroabsorption spectra of pentaammineruthenium(II) pyrazine and its conjugate acid in water. J Am Chem Soc 118:2059–2068CrossRefGoogle Scholar
  27. 27.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi Maurizio, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A. 02. Gaussian, WallingfordGoogle Scholar
  28. 28.
    Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041CrossRefGoogle Scholar
  29. 29.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys 132:154104-1–154104-19CrossRefGoogle Scholar
  30. 30.
    Zhao Y, Trular DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  31. 31.
    Hohenstein EG, Chill ST, Sherrill CD (2008) Assessment of the performance of the M05-2X and M06-2X exchange-correlation functionals for noncovalent interactions in biomolecules. J Chem Theory Comput 4:1996–2000CrossRefGoogle Scholar
  32. 32.
    Gu J, Wang J, Leszczynski J, Xie Y, Schaefer HF III (2008) To stack or not to stack: performance of a new density functional for the uracil and thymine dimmers. Chem Phys Lett 459:164–166CrossRefGoogle Scholar
  33. 33.
    Zhao Y, Trular DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167CrossRefGoogle Scholar
  34. 34.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  35. 35.
    Caricato M, Mennucci B, Tomasi J (2006) Formation and relaxation of excited states in solution: a new time dependent polarizable continuum model based on time dependent density functional theory. J Chem Phys 124:124520-1–12452012452013CrossRefGoogle Scholar
  36. 36.
    Kongsted J, Osted A, Mikkelsen KV, Astrand PO, Christiansen O (2004) Solvent effects on the n–π* electronic transition in formaldehyde: a combined coupled cluster/molecular dynamics study. J Chem Phys 121:8435–8445CrossRefGoogle Scholar
  37. 37.
    Jacob CR, Neugebauer J, Jensen L, Visscher L (2006) Comparison of frozen-density embedding and discrete reaction field solvent models for molecular properties. Phys Chem Chem Phys 8:2349–2359CrossRefGoogle Scholar
  38. 38.
    Accelrys Software Inc. (2006) Materials studio, version 4.0. Accelrys, San DiegoGoogle Scholar
  39. 39.
    Marder SR, Perry JW, Tiemann BG, Gorman CB, Gilmour S, Biddle S, Bourhill G (1993) Direct observation of reduced bond length alternation in donor/acceptor polyenes. J Am Chem Soc 115:2524–2526CrossRefGoogle Scholar
  40. 40.
    Sun H (1995) Ab initio calculations and force field development for computer simulation of polysilanes. Macromolecules 28:701–712CrossRefGoogle Scholar
  41. 41.
    Sun H (1995) Ab initio calculations on small molecule analogues of polycarbonates. J Phys Chem 99:5873–5882CrossRefGoogle Scholar
  42. 42.
    Hwang MJ, Stochfisch TP, Hagler A (1994) Derivation of class I1 force fields. 2. Derivation and characterization of a class I1 force field, CFF93, for the alkyl functional group and alkane molecules. J Am Chem Soc 116:2515–2525CrossRefGoogle Scholar
  43. 43.
    Meng S, Ma J (2008) Solvatochromic shift of donor–acceptor substituted bithiophene in solvents of different polarity: quantum chemical and molecular dynamics simulations. J Phys Chem B 112:4313–4322CrossRefGoogle Scholar
  44. 44.
    Meng S, Ma J, Jiang Y (2007) Solvent effects on electronic structures and chain conformations of α-oligothiophenes in polar and apolar solutions. J Phys Chem B 111:4128–4136CrossRefGoogle Scholar
  45. 45.
    Liu Z, Ma J (2011) Effects of external electric field and self-aggregations on conformational transition and optical properties of azobenzene-based D–π–A type chromophore in THF solution. J Phys Chem A 115:10136–10145CrossRefGoogle Scholar
  46. 46.
    Meng S, Li W, Yin X, Xie J (2013) A comprehensive theoretical study of the hydrogen bonding interactions and microscopic solvation structures of a pyridyl-urea-based hydrogelator in aqueous solution. Comput Theor Chem 1006:76–84CrossRefGoogle Scholar
  47. 47.
    Meng S, Tang Y, Yin Y, Yin X, Xie J (2013) A theoretical study of molecular conformations and gelation ability of N,N9-dipyridyl urea compounds in ethanol solution: DFT calculations and MD simulations. RSC Adv 3:18115–18127CrossRefGoogle Scholar
  48. 48.
    Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268CrossRefGoogle Scholar
  49. 49.
    Karasawa N, Goddard WAI (1989) Acceleration of convergence for lattice sums. J Phys Chem 93:7320–7327CrossRefGoogle Scholar
  50. 50.
    Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Goetz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) Amber 12. University of California, San FranciscoGoogle Scholar
  51. 51.
    Wang J, Wolf RM, Caldwell JW, Kollamn PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174CrossRefGoogle Scholar
  52. 52.
    Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP Model. J Phys Chem 97:10269–10280CrossRefGoogle Scholar
  53. 53.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  54. 54.
    Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341CrossRefGoogle Scholar
  55. 55.
    Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  56. 56.
    Murugan NA, Kongsted J, Rinkevicius Z, Aidas K, Ågren H (2010) Modeling the structure and absorption spectra of stilbazolium merocyanine in polar and nonpolar solvents using hybrid QM/MM techniques. J Phys Chem B 114:13349–13357CrossRefGoogle Scholar
  57. 57.
    Rösch U, Yao S, Wortmann R, Würthner F (2006) Fluorescent H-aggregates of merocyanine dyes. Angew Chem Int Ed 45:7026–7030CrossRefGoogle Scholar
  58. 58.
    Wortmann R, Rösch U, Redi-Abshiro M, Würthner F (2003) Large electric-field effects on the dipolar aggregation of merocyanine dyes. Angew Chem Int Ed 42:2080–2083CrossRefGoogle Scholar
  59. 59.
    Würthner F, Yao S, Debaerdemaeker T, Wortmann R (2002) Dimerization of merocyanine dyes. structural and energetic characterization of dipolar dye aggregates and implications for nonlinear optical materials. J Am Chem Soc 124:9431–9447CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Suci Meng
    • 1
    • 2
  • Stefano Caprasecca
    • 3
  • Ciro Achille Guido
    • 3
  • Sandro Jurinovich
    • 3
  • Benedetta Mennucci
    • 3
  1. 1.School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople’s Republic of China
  3. 3.Department of ChemistryUniversity of PisaPisaItaly

Personalised recommendations