Helical molecular redox actuators with pancake bonds?

Abstract

In an attempt to design molecular electromechanical actuators with large deformation response, we present here three helicene-like compounds, which offer significant strain above 5 % due to two-electron charge transfer (CT). The shrinking induced by CT is a quantum mechanical orbital effect. A good π–π overlap across the helical pitch is critical for this type of actuation. The relevant overlap refers to frontier orbitals that are involved in the CT, and it has some features common with π–π stacking pancake bonds; however, these molecules do not represent all aspects of typical pancake bonding. This overlap is accompanied by a change in the bond length alternation pattern indicating significant change in π-conjugation. Additionally, two further helicene-like molecules included in this study also indicate large electromechanical actuation, but a simple orbital interpretation is not available in those cases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Baughman RH (2005) Science 308:63–65

    CAS  Article  Google Scholar 

  2. 2.

    Mirfakhrai T, Madden JDW, Baughman RH (2007) Mater Today 10:30–38

    CAS  Article  Google Scholar 

  3. 3.

    Göpel W (1991) Sens Actuators B Chem 4:7–21

    Article  Google Scholar 

  4. 4.

    Smela E (2003) Adv Mater 15:481–494

    CAS  Article  Google Scholar 

  5. 5.

    Terao F, Morimoto M, Irle M (2012) Angew Chem Int Ed 51:901–904

    CAS  Article  Google Scholar 

  6. 6.

    Ebron VH, Yang Z, Seyer DJ, Kozlov ME, Oh J, Xie H, Razal J, Hall LJ, Ferraris JP, MacDiarmid AG, Baughman RH (2006) Science 311:1580–1583

    CAS  Article  Google Scholar 

  7. 7.

    Yu HH, Swager TM (2004) IEEE J Ocean Eng 29:692–695

    Article  Google Scholar 

  8. 8.

    Marsella MJ, Reid RJ (1999) Macromolecules 32:5982–5984

    CAS  Article  Google Scholar 

  9. 9.

    Barboiu M, Vaughan G, Kyritsakas N, Lehn JM (2003) Chem Eur J 9:763–769

    CAS  Article  Google Scholar 

  10. 10.

    Juluri BK, Kumar AS, Liu Y, Ye T, Yang YW, Flood AH, Fang L, Stoddart JF, Weiss PS, Huang TJ (2009) ACS Nano 3:291–300

    CAS  Article  Google Scholar 

  11. 11.

    Huang TJ, Brough B, Ho C-M, Liu Y, Flood AH, Bonvallet PA, Tseng H-R, Stoddart JF, Baller M, Magonov S (2004) Appl Phys Lett 85:5391

    CAS  Article  Google Scholar 

  12. 12.

    Madden JD, Cush RA, Kanigan TS, Brenan CJ, Hunter IW (1999) Synth Met 105:61–64

    CAS  Article  Google Scholar 

  13. 13.

    Madden JD, Cush RA, Kanigan TS, Hunter IW (2000) Synth Met 113:185–192

    CAS  Article  Google Scholar 

  14. 14.

    Qi B, Lu W, Mattes BR (2004) J Phys Chem B 108:6222–6227

    CAS  Article  Google Scholar 

  15. 15.

    Tahhan M, Truong V-T, Spinks GM, Wallace GG (2003) Smart Mater Struct 12:626–632

    CAS  Article  Google Scholar 

  16. 16.

    Han G, Shi G (2004) Sens Actuators B Chem 99:525–531

    CAS  Article  Google Scholar 

  17. 17.

    Baughman RH (1999) Science 284(80):1340–1344

    CAS  Article  Google Scholar 

  18. 18.

    Bissell RA, Córdova E, Kaifer AE, Stoddart JF (1994) Nature 369:133–137

    CAS  Article  Google Scholar 

  19. 19.

    Credi A, Balzani V, Langford SJ, Stoddart JF (1997) J Am Chem Soc 119:2679–2681

    CAS  Article  Google Scholar 

  20. 20.

    Tseng HR, Vignon SA, Stoddart JF (2003) Angew Chem Int Ed 42:1491–1495

    CAS  Article  Google Scholar 

  21. 21.

    Badjic JD, Balzani V, Credi A, Silvi S, Stoddart JF (2004) Science 303:1845–1849

    CAS  Article  Google Scholar 

  22. 22.

    Tian YH, Kertesz M (2009) Chem Mater 21:2149–2157

    CAS  Article  Google Scholar 

  23. 23.

    Song C, Swager TM (2008) Org Lett 10:3575–3578

    CAS  Article  Google Scholar 

  24. 24.

    Chebny VJ, Shukla R, Lindeman SV, Rathore R (2009) Org Lett 11:1939–1942

    CAS  Article  Google Scholar 

  25. 25.

    Scherlis DA, Marzari N (2005) J Am Chem Soc 127:3207–3212

    CAS  Article  Google Scholar 

  26. 26.

    Goto K, Kubo T, Yamamoto K, Nakasuji K, Sato K, Shiomi D, Takui T, Kubota M, Kobayashi T, Yakusi K, Ouyang JY (1999) J Am Chem Soc 121:1619–1620

    CAS  Article  Google Scholar 

  27. 27.

    Zheng SJ, Lan J, Khan SI, Rubin Y (2003) J Am Chem Soc 125:5786–5791

    CAS  Article  Google Scholar 

  28. 28.

    Small D, Rosokha SV, Kochi JK, Head-Gordon M (2005) J Phys Chem A 109:11261–11267

    CAS  Article  Google Scholar 

  29. 29.

    Zaitsev V, Rosokha SV, Head-Gordon M, Kochi JK (2006) J Org Chem 71:520–526

    CAS  Article  Google Scholar 

  30. 30.

    Haddon RC (2012) ChemPhysChem 13:3581–3583

    CAS  Article  Google Scholar 

  31. 31.

    Suzuki S, Morita Y, Fukui K, Sato K, Shiomi D, Takui T, Nakasuji K (2006) J Am Chem Soc 128:2530–2531

    CAS  Article  Google Scholar 

  32. 32.

    Tian YH, Kertesz M (2010) J Am Chem Soc 132(31):10648–10649

    CAS  Article  Google Scholar 

  33. 33.

    Cui ZH, Lischka H, Beneberu HZ, Kertesz M (2014) J Am Chem Soc 136:5539–5542

    CAS  Article  Google Scholar 

  34. 34.

    Bondi A (1964) J Phys Chem 68:441–451

    CAS  Article  Google Scholar 

  35. 35.

    Mou Z, Uchida K, Kubo T, Kertesz M (2014) J Am Chem Soc 136:18009–18022

    CAS  Article  Google Scholar 

  36. 36.

    Rempala P, King BT (2006) J Chem Theory Comput 2:1112–1118

    CAS  Article  Google Scholar 

  37. 37.

    Mathew SM, Hartley CS (2011) Macromolecules 44:8425–8432

    CAS  Article  Google Scholar 

  38. 38.

    Mathew SM, Engle JT, Ziegler CJ, Hartley CS (2013) J Am Chem Soc 135:6714–6722

    CAS  Article  Google Scholar 

  39. 39.

    Ohta E, Sato H, Ando S, Kosaka A, Fukushima T, Hashizume D, Yamasaki M, Hasegawa K, Muraoka A, Ushiyama H, Yamashita K, Aida T (2011) Nat Chem 3:68–73

    CAS  Article  Google Scholar 

  40. 40.

    Kimura Y, Fukawa N, Miyauchi Y, Noguchi K, Tanaka K (2014) Angew Chem Int Ed 53:8480–8483

    CAS  Article  Google Scholar 

  41. 41.

    Han S, Bond AD, Disch RL, Holmes D, Schulman JM, Teat SJ, Vollhardt KPC, Whitener GD (2002) Angew Chem Int Ed 114:3357–3361

    Article  Google Scholar 

  42. 42.

    Sun G, Kürti J, Kertesz M, Baughman RH (2002) J Am Chem Soc 124:15076–15080

    CAS  Article  Google Scholar 

  43. 43.

    Zhao Y, Schultz EN, Truhlar DG (2006) J Chem Theory Comput 2:364–382

    Article  Google Scholar 

  44. 44.

    Beneberu HZ, Tian TH, Kertesz M (2012) Phys Chem Chem Phys 14:10713–10725

  45. 45.

    Frisch MJ et al (2013) Gaussian 09, Revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  46. 46.

    Zhurko GA, Zhurko DA Chemcraft, Version 1.8 (2015). http://Chemcraftprog.com

  47. 47.

    Helix, in Wolfram Mathworld. http://mathworld.wolfram.com/Helix.html. Accessed on 13 May 2015

  48. 48.

    Longuet-Higgins HC, Salem L (1959) Proc R Soc A Math Phys Eng Sci 251:172–185

    CAS  Article  Google Scholar 

  49. 49.

    Kertesz M, Choi CH, Yang SJ (2005) Chem Rev 105:3448–3481

    CAS  Article  Google Scholar 

  50. 50.

    Nakagawa H, Yoshino J, Yamada K, Shiro M (2003) Chem Lett 32:90–91

    CAS  Article  Google Scholar 

Download references

Acknowledgments

P. B. is grateful to the Fond d’aide à la mobilité étudiante (FAME) for a FAME/BMI traineeships grant and a Visiting Scientist Fellowship to Georgetown University. We thank the U S National Science Foundation for its support of this research at Georgetown University (Grant Number CHE-1006702). MK is member of the Georgetown Institute of Soft Matter.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miklos Kertesz.

Additional information

Published as part of the special collection of articles “Festschrift in honour of P. R. Surjan”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 401 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beaujean, P., Kertesz, M. Helical molecular redox actuators with pancake bonds?. Theor Chem Acc 134, 147 (2015). https://doi.org/10.1007/s00214-015-1750-3

Download citation

Keywords

  • Molecular actuators
  • Charge transfer
  • Helical structure
  • π–π Overlap
  • Density functional theory computations