Skip to main content
Log in

Quantum dynamics of a plasmonic metamolecule with a time-dependent driving

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We simulate the dynamics of a quantum dot coupled to the single resonating mode of a metal nanoparticle. Systems like this are known as metamolecules. In this study, we consider a time-dependent driving field acting onto the metamolecule. We use the Heisenberg equations of motion for the entire system, while representing the resonating mode in Wigner phase space. A time-dependent basis is adopted for the quantum dot. We integrate the dynamics of the metamolecule for a range of coupling strengths between the quantum dot and the driving field, while restricting the coupling between the quantum dot and the resonant mode to weak values. By monitoring the average of the time variation in the energy of the metamolecule model, as well as the coherence and the population difference in the quantum dot, we observe distinct nonlinear behavior in the case of strong coupling to the driving field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tame MF, McEnery KR, Özdemir SK, Lee J, Maier SA, Kim MS (2013) Nat Phys 9:329

    Article  CAS  Google Scholar 

  2. Chen X, Li S, Xue C, Banholzer MJ, Schatz GC, Mirkin CA (2009) ACS Nano 3:87

    Article  CAS  Google Scholar 

  3. Zuloaga J, Prodan E, Nordlander P (2010) ACS Nano 4:5269

    Article  CAS  Google Scholar 

  4. Marinica DC, Kazansky AK, Nordlander P, Aizpurua J, Borisov AG (2012) Nano Lett 12:1333

    Article  CAS  Google Scholar 

  5. Bouillard JG, Dickson W, O’Connor DP, Wurtz GA, Zayats AV (2012) Nano Lett 12:1561

    Article  CAS  Google Scholar 

  6. Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Nature 455:376

    Article  CAS  Google Scholar 

  7. Pratibha R, Park K, Smalyukh II, Park W (2009) Opt Express 17:19459

    Article  CAS  Google Scholar 

  8. Leonhardt U (2007) Nat Photon 1:207

    Article  CAS  Google Scholar 

  9. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668

    Article  CAS  Google Scholar 

  10. Lal S, Link S, Halas NJ (2007) Nat Photon 1:641

    Article  CAS  Google Scholar 

  11. Nehl CL, Hafner JH (2008) J Mater Chem 18:2415

    Article  CAS  Google Scholar 

  12. Pelton M, Aizpurua J, Bryant G (2008) Laser Photon Rev 2:136

    Article  CAS  Google Scholar 

  13. Ridolfo A, Di Stefano O, Fina N, Saija R, Savasta S (2010) Phys Rev Lett 105:263601

    Article  CAS  Google Scholar 

  14. McEnery KR, Tame MS, Maier SA, Kim MS (2014) Phys Rev A 89:013822

    Article  Google Scholar 

  15. Makarov DE, Makri N (1994) Chem Phys Lett 221:482

    Article  CAS  Google Scholar 

  16. McLachlan AD (1964) Mol Phys 8:39

    Article  Google Scholar 

  17. Tully JC, Preston RK (1971) J Chem Phys 55:562

    Article  CAS  Google Scholar 

  18. Miller WH, George FF (1972) J Chem Phys 56:5637

    Article  CAS  Google Scholar 

  19. Pechukas P (1969) Phys Rev 181:166

    Article  Google Scholar 

  20. Pechukas P (1969) Phys Rev 174:166

    Article  Google Scholar 

  21. Heller EJ, Segev B, Sergeev AV (2002) J Phys Chem B 106:8471

    Article  CAS  Google Scholar 

  22. Shenvi N (2009) J Chem Phys 130:124177

    Google Scholar 

  23. Aleksandrov IV (1981) Z Nat Forsch A 36:902

    Google Scholar 

  24. Gerasimenko VI (1982) Teor Mat Fiz 150:7

    Google Scholar 

  25. Boucher W, Traschen J (1988) Phys Rev D 37:3522

    Article  CAS  Google Scholar 

  26. Zhang WY, Balescu R (1988) J Plasma Phys 40:199

    Article  Google Scholar 

  27. Balescu R, Zhang WY (1988) J Plasma Phys 40:215

    Article  Google Scholar 

  28. Osborn TA, Kondrat’eva MF, Tabisz GC, McQuarrie BR (1999) J Phys A Math Gen 32:4149

    Article  Google Scholar 

  29. Kapral R, Ciccotti G (1999) J Chem Phys 110:8919

    Article  CAS  Google Scholar 

  30. Sergi A, MacKernan D, Ciccotti G, Kapral R (2003) Theor Chem Acc 110:49

    Article  CAS  Google Scholar 

  31. Sergi A, Petruccione F (2010) Phys Rev E 81:032101

    Article  Google Scholar 

  32. Uken DA, Sergi A, Petruccione F (2011) Phys Scr T143:014024

    Article  Google Scholar 

  33. Uken DA, Sergi A, Petruccione F (2013) Phys Rev E 88:033301

    Article  Google Scholar 

  34. Sergi A, Sinayskiy I, Petruccione F (2009) Phys Rev A 80:012108

    Article  Google Scholar 

  35. Breuer HP, Petruccione F (2002) The theory of open quantum systems. Oxford University Press, Oxford

    Google Scholar 

  36. Weiss U (2008) Quantum dissipative systems. World Scientific, Singapore

    Book  Google Scholar 

  37. Gerry CC, Knight P (2004) Introductory Quantum Optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  38. Goldstein H (1980) Classical mechanics. Addison-Wesley, New York

    Google Scholar 

  39. Sergi A (2005) Phys Rev E 72:066125

    Article  Google Scholar 

  40. Sergi A, Giaquinta P (2007) Phys Essays 20:629

    Article  Google Scholar 

  41. Sergi A (2007) J Phys A Math Theor 40:F347

    Article  Google Scholar 

  42. Horenko I, Schmidt B, Schuütte C (2001) J Chem Phys 115:5733

    Article  CAS  Google Scholar 

  43. Shirley JH (1965) Phys Rev B 138:979

    Article  Google Scholar 

  44. Zeldovich YB (1967) Sov Phys JETP 24:1006

    Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Mark Tame for useful discussions and for stimulating our interest in quantum plasmonics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Sergi.

Additional information

This work is based upon research supported by the National Research Foundation of South Africa.

Appendices

Appendix 1: Adimensional coordinates and parameters

Upon indicating the dimensional coordinates and parameters with a prime, and introducing the energy scale \(\hbar \omega _{{\mathrm{a}}}'\), we have the following definitions:

$$\begin{aligned} \varOmega= & {} \frac{\varOmega '}{\omega _{{\mathrm{a}}}'} , \end{aligned}$$
(28)
$$\begin{aligned} P= & {} \frac{P'}{\sqrt{M'\hbar \omega _{{\mathrm{a}}}'} }, \end{aligned}$$
(29)
$$\begin{aligned} R= & {} \sqrt{\frac{\hbar \omega _{{\mathrm{a}}}'}{\hbar }} R', \end{aligned}$$
(30)
$$\begin{aligned} \omega= & {} \frac{\omega '}{\omega _{{\mathrm{a}}}'},\end{aligned}$$
(31)
$$\begin{aligned} c= & {} \frac{c'}{\sqrt{ \hbar \omega _{{\mathrm{a}}}^{\prime 3}M'}},\end{aligned}$$
(32)
$$\begin{aligned} g= & {} \frac{g'}{\hbar \omega _{{\mathrm{a}}}'},\end{aligned}$$
(33)
$$\begin{aligned} \beta&= {} \hbar \omega _{{\mathrm{a}}}'\beta '\;. \end{aligned}$$
(34)

The symbol M is the inertial parameter of the oscillator, which has been set to unity. Upon choosing \(\omega _{{\mathrm{a}}}'\) in such a way that the frequency \(\omega =0.5\) of the oscillator in Eq. (16) corresponds to the value \(\omega '=8.9 \times 10^{12}\) Hz, which is typical for the dynamics of metal nanoparticles [14], we obtain a spanned timescale in our simulations of \(5.62 \times 10^{-12}\) s and an energy variation for the quantum dot, as shown in Fig. 4, of 24.6 meV.

Appendix 2: Phase-space-grid algorithm

The equation of the density matrix in the partial Wigner representation is analogous to that given in Eq. (4):

$$\begin{aligned} \frac{\partial }{\partial t}\hat{\rho }(X,t)=-\frac{i}{\hbar }\left[ \begin{array}{cc} \hat{H}_{{\mathrm{W}}}(X)&\hat{\rho }_{{\mathrm{W}}}(X,t)\end{array}\right] {{\mathcal {D}}} \left[ \begin{array}{c}\hat{H}_{{\mathrm{W}}}(X) \\ \hat{\rho }_{{\mathrm{W}}}(X,t)\end{array}\right] \;. \end{aligned}$$
(35)

Using the basis defined by \(\hat{H}_{{\mathrm{S}}}|\alpha \rangle = \epsilon _{\alpha } |\alpha \rangle\) (\(\alpha =1,2\)), Eq. (35) can be written as

$$\begin{aligned} \frac{\partial }{\partial t}\rho _{{\mathrm{W}}}^{\alpha \alpha '}(R,P,t)= & {} -i\tilde{\omega }_{\alpha \alpha '}\rho _{{\mathrm{W}}}^{\alpha \alpha '}-L\rho _{{\mathrm{W}}}^{\alpha \alpha '}- \frac{i}{\hbar }\left( H_{{\mathrm{C,W}}}^{\alpha \beta }\rho _{{\mathrm{W}}}^{\beta \alpha '} - \rho _{{\mathrm{W}}}^{\alpha \beta '}H_{{\mathrm{C,W}}}^{\beta '\alpha '}\right) \nonumber \\&- \frac{i}{\hbar }\left( H_{E}^{\alpha \beta }\rho _{{\mathrm{W}}}^{\beta \alpha '} - \rho _{{\mathrm{W}}}^{\alpha \beta '}H_{E}^{\beta '\alpha '}\right) \nonumber \\&+ \frac{1}{2}\left( \frac{\partial H_{{\mathrm{C,W}}}^{\alpha \beta }}{\partial R}\frac{\partial \rho _{{\mathrm{W}}}^{\beta \alpha '}}{\partial P} + \frac{\partial \rho _{{\mathrm{W}}}^{\alpha \beta '}}{\partial P}\frac{\partial H_{{\mathrm{C,W}}}^{\beta '\alpha '}}{\partial R}\right), \end{aligned}$$
(36)

where the frequency \(\tilde{\omega }_{\alpha \alpha '} = \left( \epsilon _{\alpha } - \epsilon _{\alpha '}\right) /\hbar\) has been defined. The Liouville operator, L, is given by

$$\begin{aligned} L = P\frac{\partial }{\partial R}- \frac{\partial H_{B,W}}{\partial R}\frac{\partial }{\partial P}\;. \end{aligned}$$
(37)

One can introduce the following frequencies \(\tilde{\omega }^{\alpha \alpha '}\):

$$\begin{aligned}&\tilde{\omega }^{11} = 0, \quad \tilde{\omega }^{22} = 0, \nonumber \\&\tilde{\omega }^{12} = \varOmega , \quad \tilde{\omega }^{21} = -\hbar \varOmega . \end{aligned}$$
(38)

The equations of motion for matrix elements of the density operator can be written explicitly as:

$$\begin{aligned} \frac{\partial }{\partial t}\rho _{{\mathrm{W}}}^{11}(R,P,t)= & {} \frac{i}{\hbar }cR\left( 2i\text {Im}\left[ \rho _{{\mathrm{W}}}^{21}\right] \right) -\frac{i}{\hbar }g\cos (\omega _{d}t)\left( 2i\text {Im}\left[ \rho _{{\mathrm{W}}}^{21}\right] \right) \nonumber \\&- L\rho _{{\mathrm{W}}}^{11}- \frac{c}{2}\frac{\partial }{\partial P}\left( 2\text {Re}\left[ \rho _{{\mathrm{W}}}^{21}\right] \right), \end{aligned}$$
(39)
$$\begin{aligned} \frac{\partial }{\partial t}\rho _{{\mathrm{W}}}^{21}(R,P,t)= & {} {-}i\tilde{\omega }_{21}\rho _{{\mathrm{W}}}^{21}+ \frac{i}{\hbar }cR\left( \rho _{{\mathrm{W}}}^{11} - \rho _{{\mathrm{W}}}^{22}\right) -\frac{i}{\hbar }g\cos (\omega _{d}t)\left( \rho _{{\mathrm{W}}}^{11}- \rho _{{\mathrm{W}}}^{22}\right) \nonumber \\&- L\rho _{{\mathrm{W}}}^{21}- \frac{c}{2}\frac{\partial }{\partial P}\left( \rho _{{\mathrm{W}}}^{11}+\rho _{{\mathrm{W}}}^{22}\right), \end{aligned}$$
(40)
$$\begin{aligned} \frac{\partial }{\partial t}\rho _{{\mathrm{W}}}^{22}(R,P,t)= & {} -\frac{i}{\hbar }cR\left( 2i\text {Im}\left[ \rho _{{\mathrm{W}}}^{21}\right] \right) +\frac{i}{\hbar }g\cos (\omega _{d}t)\left( 2i\text {Im}\left[ \rho _{{\mathrm{W}}}^{21}\right] \right) \nonumber \\&- L\rho _{{\mathrm{W}}}^{22}- \frac{c}{2}\frac{\partial }{\partial P}\left( 2\text {Re}\left[ \rho _{{\mathrm{W}}}^{21}\right] \right) \,. \end{aligned}$$
(41)

In order to simplify the integration, one can use the definition

$$\begin{aligned} \rho _{{\mathrm{W}}}^{\alpha \alpha '}(X,t)=\eta _{{\mathrm{W}}}^{\alpha \alpha '}(X,t) e^{-i\tilde{\omega }^{\alpha \alpha '}t}\;. \end{aligned}$$
(42)

Hence, using dimensionless coordinates, the equations of motion become

$$\begin{aligned} \frac{\partial }{\partial t}\eta _{{\mathrm{W}}}^{11}= & {} -2cR\left( -\text {Re}\left[ \eta _{{\mathrm{W}}}^{21}\right] \sin \left( \tilde{\omega }_{21}t\right) + \text {Im}\left[ \eta _{{\mathrm{W}}}^{21}\right] \cos \left( \tilde{\omega }_{21}t\right) \right) \nonumber \\&+ 2g\cos {(\omega t)}\left( -\text {Re}\left[ \eta _{{\mathrm{W}}}^{21}\right] \sin \left( \tilde{\omega }_{21}t\right) + \text {Im}\left[ \eta _{{\mathrm{W}}}^{21}\right] \cos \left( \tilde{\omega }_{21}t\right) \right) \nonumber \\&- L\eta _{{\mathrm{W}}}^{11}- c\frac{\partial }{\partial P}\left( \text {Re}\left[ \eta _{{\mathrm{W}}}^{21}\right] \cos \left( \tilde{\omega }_{21}t\right) + \text {Im}\left[ \eta _{{\mathrm{W}}}^{21}\right] \sin \left( \tilde{\omega }_{21}t\right) \right), \end{aligned}$$
(43)
$$\begin{aligned} \frac{\partial }{\partial t}\eta _{{\mathrm{W}}}^{22}=\; & {} 2cR\left( -\text {Re}\left[ \eta _{{\mathrm{W}}}^{21}\right] \sin \left( \tilde{\omega }_{21}t\right) + \text {Im}\left[ \eta _{{\mathrm{W}}}^{21}\right] \cos \left( \tilde{\omega }_{21}t\right) \right) \nonumber \\&- 2g\cos {(\omega t)}\left( -\text {Re}\left[ \eta _{{\mathrm{W}}}^{21}\right] \sin \left( \tilde{\omega }_{21}t\right) + \text {Im}\left[ \eta _{{\mathrm{W}}}^{21}\right] \cos \left( \tilde{\omega }_{21}t\right) \right) \nonumber \\&- L\eta _{{\mathrm{W}}}^{22}- c\frac{\partial }{\partial P}\left( \text {Re}\left[ \eta _{{\mathrm{W}}}^{21}\right] \cos \left( \tilde{\omega }_{21}t\right) + \text {Im}\left[ \eta _{{\mathrm{W}}}^{21}\right] \sin \left( \tilde{\omega }_{21}t\right) \right), \end{aligned}$$
(44)
$$\begin{aligned} \frac{\partial }{\partial t}\left( \text {Re}\left[ \eta _{{\mathrm{W}}}^{21}\right] \right)= & {} {-}cR\left( \eta _{{\mathrm{W}}}^{11}- \eta _{{\mathrm{W}}}^{22}\right) \sin (\tilde{\omega }_{21}t)+g\cos (\omega _{d}t)\left( \eta _{{\mathrm{W}}}^{11}- \eta _{{\mathrm{W}}}^{22}\right) \sin (\tilde{\omega }_{21}t) \nonumber \\&- L\left( \text {Re}\left[ \eta _{{\mathrm{W}}}^{21}\right] \right) - \frac{c}{2}\frac{\partial }{\partial P}\left( \eta _{{\mathrm{W}}}^{11}+ \eta _{{\mathrm{W}}}^{22}\right) \cos (\tilde{\omega }_{21}t), \end{aligned}$$
(45)
$$\begin{aligned} \frac{\partial }{\partial t}\left( \text {Im}\left[ \eta _{{\mathrm{W}}}^{21}\right] \right)= & {} cR\left( \eta _{{\mathrm{W}}}^{11}- \eta _{{\mathrm{W}}}^{22}\right) \cos (\tilde{\omega }_{21}t) -g\cos (\omega _{d}t)\left( \eta _{{\mathrm{W}}}^{11}- \eta _{{\mathrm{W}}}^{22}\right) \cos (\tilde{\omega }_{21}t) \nonumber \\&- L\left( \text {Im}\left[ \eta _{{\mathrm{W}}}^{21}\right] \right) - \frac{c}{2}\frac{\partial }{\partial P}\left( \eta _{{\mathrm{W}}}^{11}+ \eta _{{\mathrm{W}}}^{22}\right) \sin (\tilde{\omega }_{21}t)\;. \end{aligned}$$
(46)

Equations (43), (44), (45), and (46) describe a set of coupled partial differential equations (PDE’s) which can be solved to obtain the elements of the density matrix as functions of time. In order to solve these coupled PDEs, the numerical integration approach known as the method of lines can be employed. The method of lines transforms the PDEs into a set of ordinary differential equations (ODEs) by using finite difference approximations for all but one of the integration variables. In this case, the phase-space derivatives are approximated, while the time variable is left un-approximated. For the types of potentials studied in this work, a fourth-order finite difference approximation for the phase-space derivatives proves to be more than sufficient:

$$\begin{aligned} \frac{{\text {d}}f}{{\text {d}} X} = \left( \frac{f(X - 2{\text {d}}X) - 8f(X - {\text {d}}X) + 8f(X + {\text {d}}X) - f(X + 2{\text {d}}X)}{12{\text {d}}X}\right) \,. \end{aligned}$$
(47)

Once the conversion from PDEs to ODEs has been performed, a numerical integration method can be utilized. In this work, a Runge-Kutta 5 Cash–Karp method was found to be suitable for stable numerical results. In such an approach, the phase space of the system is essentially discretized into a numerical grid, upon which the coupled ODEs are solved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uken, D.A., Sergi, A. Quantum dynamics of a plasmonic metamolecule with a time-dependent driving. Theor Chem Acc 134, 141 (2015). https://doi.org/10.1007/s00214-015-1749-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1749-9

Keywords

Mathematics Subject Classification

Navigation