Skip to main content
Log in

Investigating the role of the π-bridge characteristics in donor–π-spacer–acceptor type dyes for solar cell application: a theoretical study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this work, we present application of a previously proposed DFT-based computational protocol to a series of four push–pull type organic dyes for DSSC application, among which two are newly introduced here. Dyes investigated all use cyanoacrylic acid and dithiafulvene as the acceptor and donor subunits, respectively, and differ by their π-spacer: phenyl (DTF-C1), phenyl-thiophene-phenyl (DTF-C3), phenyl-furan-phenyl (DTF-C5), phenyl-N-ethyl pyrrole-phenyl (DTF-C6), making an investigation of the role of the π-bridge characteristics, including length and electronic structures, on the performances of DSSC systems possible. Investigated properties included UV–visible spectra of isolated dyes, and important macroscopic DSSC experimental data such as injection times, incident photon-to-current conversion efficiencies and short-circuit photocurrents derived from the adsorption of these dyes on a water-passivated TiO2 surface. Fairly good agreements between the computational and experimental results have been obtained. Furthermore, from the computed data, we predict that one of the newly introduced dyes is an excellent candidate for DSSC application, with expected photoconversion efficiencies higher than those previously achieved for this sensitizer series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M (1991) Nature 353:737

    Article  Google Scholar 

  2. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595

    Article  CAS  Google Scholar 

  3. Spitler MT, Parkinson BA (2009) Acc Chem Res 42:2017

    Article  CAS  Google Scholar 

  4. Hagfeldt A, Grätzel M (1995) Chem Rev 95:49

    Article  CAS  Google Scholar 

  5. Chia Y, Islam A, Watanable Y, Komiya R, Koide N, Han L (2006) Jpn J Appl Phys 45:638

    Article  Google Scholar 

  6. Cao Y, Bai Y, Yu Q, Cheng Y, Liu S, Shi D, Gao F, Wang P (2009) J Phys Chem C 113:6290

    Article  CAS  Google Scholar 

  7. Yella A, Lee HW, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EWG, Yeh CY, Zakeeruddin SM, Grätzel M (2011) Science 334:629

    Article  CAS  Google Scholar 

  8. Satoh N, Nakashima T, Yamamoto K (2005) J Am Chem Soc 127:13030

    Article  CAS  Google Scholar 

  9. Wang ZS, Cui Y, Dan-oh Y, Kasada C, Shinpo A, Hara K (2007) J Phys Chem C 111:7224

    Article  CAS  Google Scholar 

  10. Koumura N, Wang ZS, Mori S, Miyashita M, Suzuki E, Hara K (2006) J Am Chem Soc 128:41256

    Article  Google Scholar 

  11. Wenger S, Bouit PA, Chen QL, Teuscher J, Censo DD, Humphry-Baker R, Moser JE, Delgado JL, Martin N, Zakeeruddin SM, Grätzel M (2010) J Am Chem Soc 132:5164

    Article  CAS  Google Scholar 

  12. Meyers F, Bredas JL, Zyss J (1992) J Am Chem Soc 114:2914

    Article  CAS  Google Scholar 

  13. De Lucas AI, Martin N, Sanchez L, Seoane C, Garin J, Orduna J, Alcala R, Villacampa B (1997) Tetrahedron Lett 38:6107

    Article  Google Scholar 

  14. Blanchard-Desce M, Ledoux I, Lehn JM, Malthete J, Zyss J (1988) J Chem Soc Chem Commun (11):737–739

  15. Joly D, Pellejà L, Narbey S, Oswald F, Chiron J, Clifford JN, Palomares E, Demadrille R (2014) Sci Rep 4:4033

    Article  CAS  Google Scholar 

  16. Labat F, Le Bahers T, Ciofini I, Adamo C (2012) Acc Chem Res 45:1268

    Article  CAS  Google Scholar 

  17. Guo K, Yan K, Lu X, Qiu Y, Liu Z, Sun J, Yan F, Guo W, Yang S (2012) Org Lett 14:2214

    Article  CAS  Google Scholar 

  18. Labat F, Ciofini I, Adamo C (2011) J Phys Chem C 115:4297

    Article  CAS  Google Scholar 

  19. Labat F, Ciofini I, Adamo C (2012) J Mater Chem 22:12205

    Article  CAS  Google Scholar 

  20. Labat F, Ciofini I, Hratchian HP, Frisch M, Raghavachari K, Adamo C (2009) J Am Chem Soc 131:14290

    Article  CAS  Google Scholar 

  21. Le Bahers T, Labat F, Lainé P, Pauporté T, Ciofini I (2011) J Am Chem Soc 133:8005

    Article  Google Scholar 

  22. Le Bahers T, Pauporté T, Lainé P, Labat F, Adamo C, Ciofini I (2013) J Phys Chem Lett 4:1044

    Article  Google Scholar 

  23. Frish MJ et al (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  24. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  25. Ernzerhof M, Scuseria G (1999) J Chem Phys 110:5029

    Article  CAS  Google Scholar 

  26. Runge E, Gross EKU (1984) Phys Rev Lett 52:997

    Article  CAS  Google Scholar 

  27. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218

    Article  CAS  Google Scholar 

  28. Yanari T, Tew D, Handy N (2004) Chem Phys Lett 393:51

    Article  Google Scholar 

  29. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

  30. Mennucci B, Cancès E, Tomasi J (1997) J Phys Chem B 101:10506

    Article  CAS  Google Scholar 

  31. Cossi M, Barone V (2001) J Chem Phys 115:4708

    Article  CAS  Google Scholar 

  32. Dovesi R, Saunders V, Roetti C, Orlando R, Zicovich-Wilson C, Pascale F, Civalleri B, Doll K, Harrison N, Bush I, D’Arco P, Llunell M (2009) Crystal09. Unversità di Torino, Torino

    Google Scholar 

  33. Labat F, Ciofini I, Hratchian H, Frisch M, Raghavachari K, Adamo C (2011) J Phys Chem C 115:4297

    Article  CAS  Google Scholar 

  34. Labat F, Baranek P, Adamo C (2008) J Chem Theory Comput 4:341

    Article  CAS  Google Scholar 

  35. Labat F, Adamo C (2007) J Phys Chem C 111:15034

    Article  CAS  Google Scholar 

  36. Newns DM (1969) Phys Rev 178:1123

    Article  CAS  Google Scholar 

  37. Persson P, Lundqvist M, Ernstorfer R, Goddard W, Willig F (2006) J Chem Theory Comput 2:441

    Article  CAS  Google Scholar 

  38. Walle LE, Borg A, Johansson EMJ, Plogmaker S, Rensmo H, Uvdal P, Sandell A (2011) J Phys Chem C 115:9545

    Article  CAS  Google Scholar 

  39. Kalyanasundaram K, Grätzel M (1998) Coord Chem Rev 177:347

    Article  CAS  Google Scholar 

  40. Nayak PK, Bisquert J, Cahen D (2011) Adv Mater 23:2870

    Article  CAS  Google Scholar 

  41. De Angelis FD, Fantacci S, Selloni A, Grätzel M, Nazeeruddin MK (2007) Nano Lett 7:3189

    Article  Google Scholar 

  42. Chen P, Yum JH, Angelis FD, Mosconi E, Fantacci S, Moon SJ, Baker RH, Ko J, Nazeeruddin MK, Grätzel M (2009) Nano Lett 9:2487

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Adamo.

Additional information

Published as part of the special collection of articles “Health & Energy from the Sun”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5539 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xerri, B., Labat, F., Guo, K. et al. Investigating the role of the π-bridge characteristics in donor–π-spacer–acceptor type dyes for solar cell application: a theoretical study. Theor Chem Acc 135, 40 (2016). https://doi.org/10.1007/s00214-015-1748-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1748-x

Keywords

Navigation