Skip to main content
Log in

Heat of formation predictions of various nitro-substituted azoles by G4MP2-SFM scheme

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Heats of formation (∆H f ) of various nitro-substituted azoles were predicted by Gaussian-4 MP2 combining with systematic fragmentation method (SFM), G4MP2-SFM. The overall mean absolute deviations and root-mean-square deviations of the particular opt-G4SFM(1,2) scheme are 2.0 and 2.6 kcal/mol, respectively, on the predictions of 48 molecules. Overall, each additional nitrogen in the azole ring increases ∆H f by 10–30 kcal/mol. While the effect of the NO2 substitution to carbon (NO2(C)) is minor, that to nitrogen (NO2(N)) increases ∆H f by 15–32 kcal/mol. In addition, we found that second-neighbor contribution is also significant for nonbonding interactions between NO2 groups, which increase ∆H f by 3–4 kcal/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akhavan J (2004) The chemistry of explosives, 2nd edn. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  2. Sikder AK, Maddalla G, Agraval JP, Singh H (2001) Important aspects of behaviour of organic energetic compounds: a review. J Hazard Mater A 84:1–26

    Article  CAS  Google Scholar 

  3. Gao H, Shreeve JM (2011) Azole-based energetic salts. Chem Rev 111(11):7377–7436. doi:10.1021/cr200039c

    Article  CAS  Google Scholar 

  4. Lin QH, Li YC, Li YY, Wang Z, Liu W, Qi C, Pang SP (2012) Energetic salts based on 1-amino-1,2,3-triazole and 3-methyl-1-amino-1,2,3-triazole. J Mater Chem 22(2):666. doi:10.1039/c1jm14322k

    Article  CAS  Google Scholar 

  5. Fischer N, Gao L, Klapötke TM, Stierstorfer J (2013) Energetic salts of 5,5′-bis(tetrazole-2-oxide) in a comparison to 5,5′-bis(tetrazole-1-oxide) derivatives. Polyhedron 51:201–210. doi:10.1016/j.poly.2012.12.015

    Article  CAS  Google Scholar 

  6. Fried LE (1993) CHEETAH: a fast thermochemical code for detonation. US Department of Energy, Washington, DC

    Book  Google Scholar 

  7. Suceska M (2004) Calculation of detonation parameters by EXPLO5 computer program. Mater Sci Forum 465–466:325–330

    Article  Google Scholar 

  8. Luo YR (2003) Handbook of bond dissociation energies in organic compounds. CRC, New York

    Google Scholar 

  9. Jadhav HS, Talawar MB, Sivabalan R, Dhavale DD, Asthana SN, Krishnamurthy VN (2007) Synthesis, characterization and thermolysis studies on new derivatives of 2,4,5-trinitroimidazoles: potential insensitive high energy materials. J Hazard Mater 143(1–2):192–197. doi:10.1016/j.jhazmat.2006.09.014

    Article  CAS  Google Scholar 

  10. Talawar MB, Sivabalan R, Senthilkumar N, Prabhu G, Asthana SN (2004) Synthesis, characterization and thermal studies on furazan- and tetrazine-based high energy materials. J Hazard Mater 113(1–3):11–25. doi:10.1016/j.jhazmat.2004.05.016

    Article  CAS  Google Scholar 

  11. Cho SG, Park BS, Cho JR (1999) Theoretical studies on the structure of 1,2,4,5-tetranitroimidazole. Propel Explos Pyrotech 24:343–348

    Article  CAS  Google Scholar 

  12. Habibollahzahed D, Grice ME, Concha M, Murray JS, Politzer P (2013) Nonlocal density functional calculation of gas phase heats of formation. J Comput Chem 16:654–658

    Article  Google Scholar 

  13. Byrd EFC, Rice BM (2006) Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys Chem A 110:1005–1013

    Article  CAS  Google Scholar 

  14. Collins MA, Deev VA (2006) Accuracy and efficiency of electronic energies from systematic molecular fragmentation. J Chem Phys 125(10):104104. doi:10.1063/1.2347710

    Article  Google Scholar 

  15. Schreiner PR, Fokin AA, Pascal RA, Meijere AD (2006) Many density functional theory approaches fail to give reliable large hydrocarbon isomer energy differences. Org Lett 8(17):3635–3638

    Article  CAS  Google Scholar 

  16. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys 106(3):1063. doi:10.1063/1.473182

    Article  CAS  Google Scholar 

  17. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys 126(8):084108. doi:10.1063/1.2436888

    Article  Google Scholar 

  18. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory using reduced order perturbation theory. J Chem Phys 127(12):124105. doi:10.1063/1.2770701

    Article  Google Scholar 

  19. Rayne S, Forest K (2010) Estimated gas-phase standard state enthalpies of formation for organic compounds using the Gaussian-4 (G4) and W1BD theoretical methods. J Chem Eng Data 55:5359–5364

    Article  CAS  Google Scholar 

  20. Hehre WJ, Schleyer PVR, Radom L, Pople JA (1986) Ab initio molecular orbital theory. Wiley-Interscience, New York

    Google Scholar 

  21. Redfern PC, Zapol P, Curtiss LA, Raghavachari K (2000) Assessment of Gaussian-3 and density functional theories for enthalpies of formation of C1 C6 isomers. J Phys Chem A 104:5850–5854

    Article  CAS  Google Scholar 

  22. Shoaib MA, Cho SG, Choi CH (2014) Fast and accurate predictions of heat of formation by G4MP2-SFM parameterization scheme: an application to imidazole derivatives. Chem Phys Lett 599:57–62. doi:10.1016/j.cplett.2014.03.015

    Article  CAS  Google Scholar 

  23. Netzloff HM, Collins MA (2007) Ab initio energies of nonconducting crystals by systematic fragmentation. J Chem Phys 127(13):134113. doi:10.1063/1.2768534

    Article  Google Scholar 

  24. Deev V, Collins MA (2005) Approximate ab initio energies by systematic molecular fragmentation. J Chem Phys 122(15):154102. doi:10.1063/1.1879792

    Article  Google Scholar 

  25. Huynh MHV, Hiskey MA, Pollard CJ, Montoya DP, Hartline EL, Gilardi R (2004) 4,4′,6,6′-Tetra-substituted hydrazo- and azo-1,3,5-triazines. J Energ Mater 22(4):217–229. doi:10.1080/07370650490893054

    Article  CAS  Google Scholar 

  26. Gutowski KE, Rogers RD, Dixon DA (2007) Accurate thermochemical properties for energetic materials applications. II. Heats of formation of imidazolium-, tetrazolium based energetic salts from isodesmic and lattice energy calculations. J Phys Chem B 111:4788–4800. doi:10.1021/jp066420d

    Article  CAS  Google Scholar 

  27. Gutowski KE, Rogers RD, Dixon DA (2006) Accurate thermochemical properties for energetic materials applications. I. Heats of formation of nitrogen containing heterocycles form electronic structure theory. J Phys Chem A 110:11890–11897. doi:10.1021/jp0643698

    Article  CAS  Google Scholar 

  28. Su X, Cheng X, Ge S (2009) Theoretical investigation on structure and properties of 2,4,5-trinitroimidazole and its three derivatives. THEOCHEM 895(1–3):44–51. doi:10.1016/j.theochem.2008.10.006

    Article  CAS  Google Scholar 

  29. Chavez DE, Hiskey MA, Gilardi RD (2000) 3,3′ Azobis: a novel high nitrogen energy material. Angrew Chem Int Ed 39:1791

    Article  CAS  Google Scholar 

  30. Kerth J, Lobbecke S (2002) Synthesis and characterization of 3,3′-azobis (6-amino-1,2,4,5-tetrazine) DAAT—a new promising nitrogen-rich compound. Propel Explos Pyrotech 27:111–118

    Article  CAS  Google Scholar 

  31. Ghule VD, Sarangapani R, Jadhav PM, Tewari SP (2011) Theoretical studies on nitrogen rich energetic azoles. J Mol Model 17(6):1507–1515. doi:10.1007/s00894-010-0848-8

    Article  CAS  Google Scholar 

  32. Ciezak JA, Trevino SF (2005) The inelastic neutron scattering spectra of α-3-amino-5-nitro-1,2,4-2H-triazole: experiment and DFT calculations. Chem Phys Lett 403(4–6):329–333. doi:10.1016/j.cplett.2005.01.033

    Article  CAS  Google Scholar 

  33. Lesnikovich AI, Ivashkevich OA, Levchik SV, Balabanovich AI, Gaponik PN, Kulak AA (2002) Thermal decomposition of aminotetrazoles. Thermochim Acta 388(1–2):233–251

    Article  CAS  Google Scholar 

  34. Cho SG, Goh EM, Cho JR, Kim JK (2006) Theoretical studies on molecular and explosive properties of 4,4′,5,5′-tetranitro-2,2′-bi-1H-imidazole (TNBI). Propel Explos Pyrotech 31(1):33–37. doi:10.1002/prep.200600004

    Article  CAS  Google Scholar 

  35. Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Design and synthesis of energetic materials. Annu Rev Mater Res 31:291–321

    Article  CAS  Google Scholar 

  36. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH et al (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agency for Defense Development and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (Nos. 2007-0056341 and 2012-0004812).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soo Gyeong Cho, Tae Hoon Choi or Cheol Ho Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, M.A.M., Cho, S.G., Choi, T.H. et al. Heat of formation predictions of various nitro-substituted azoles by G4MP2-SFM scheme. Theor Chem Acc 134, 126 (2015). https://doi.org/10.1007/s00214-015-1733-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1733-4

Keywords

Navigation