Skip to main content
Log in

Thermodynamic stability of neutral and anionic PFOAs

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The thermodynamic stability of the PFOA family of 39 structural isomers was studied using the M06-2X, LC-ωPBE, B97D and B3LYP functionals and with the PM6 method. The PM6 results closely resemble the M06-2X results for neutral PFOAs, but diverge strongly in regard to anions. The four functionals applied behave similarly from a qualitative point of view, but quantitatively speaking, the LC-ωPBE and B97D results are somewhere between the M06-2X and B3LYP stability results. M06-2X ranks highly substituted isomers as more stable than did B3LYP and ranks less branched isomers quite low in relative stability compared to B3LYP. Various similarities with a former PFOSs study applying the M06-2X and B3LYP functionals have been identified. The degree of branching within structural isomers cannot always be precisely determined, and it is not the only aspect that determines thermodynamic stability, as the pattern of substitution also seems to play a significant role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tsai WT, Chen HP, Hsien WY (2002) A review of uses, environmental hazards and recovery/recycle technologies of perfluorocarbons (PFCs) emissions from the semiconductor manufacturing processes. J Loss Prev Process Ind 15:65–75

    Article  Google Scholar 

  2. Lindstrom AB, Strynar MJ, Libelo EL (2011) Polyfluorinated compounds, past, present, and future. Environ Sci Technol 45:7954–7961

    Article  CAS  Google Scholar 

  3. Domingo JL (2012) Health risks of dietary exposure to perfluorinated compounds. Environ Int 40:187–195

    Article  CAS  Google Scholar 

  4. Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99:366–394

    Article  CAS  Google Scholar 

  5. Jacquet N, Maire MA, Landkocz Y, Vasseur P (2012) Carcinogenic potency of perfluorooctane sulfonate (PFOS) on Syrian hamster embryo (SHE) cells. Arch Toxicol 86:305–314

    Article  CAS  Google Scholar 

  6. Perfluorinated Compounds (PFCs) and Human Health Concerns: Human Health and Safety initiative (2009) Global health and safety initiative. http://www.healthybuilding.net/healthcare/2009-04-20PFCs_fact_sheet. Accessed 3 Aug 2015

  7. Environment Program Secretariat of the Stockholm Convention on Persistent Organic Pollutants (2010). Conference: the nine new POPs; An introduction to the nine chemicals added to the Stockholm convention by the conference of the parties at its fourth meeting date. United Nations. http://chm.pops.int/programmes/newpops/publications/tabid/695/language/en-us/default.aspx. Accessed 3 Aug 2015

  8. Perfluorooctanoic Acid (PFOA) and Fluorinated Telomers (2015) United States environmental protection agency. http://www.epa.gov/oppt/pfoa. Accessed 3 Aug 2015

  9. Rayne S, Forest K, Friesen KJ (2008) Congener-specific numbering systems for the environmentally relevant C(4) through C(8) perfluorinated homologue groups of alkyl sulfonates, carboxylates, telomer alcohols, olefins, and acids, and their derivatives. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 43:1391–1401

    Article  CAS  Google Scholar 

  10. Benskin JP, Yeung LWY, Yamashita N, Taniyasu S, Lam PKS, Martin JW (2010) Perfluorinated acid isomer profiling in water and quantitative assessment of manufacturing source. Environ Sci Technol 44:9049–9054

    Article  CAS  Google Scholar 

  11. De Silva AO, Mabury SA (2004) Isolating isomers of perfluorocarboxylates in polar bears (Ursus maritimus) from two geographical locations. Environ Sci Technol 38:6538–6545

    Article  Google Scholar 

  12. De Silva AO, Mabury SA (2006) Isomer distribution of perfluorocarboxylates in human blood: potential correlation to source. Environ Sci Technol 40:2903–2909

    Article  Google Scholar 

  13. Benskin JP, De Silva AO, Martin LJ, Arsenault G, McCrindle R, Riddell N, Mabury SA, Martin JW (2009) Disposition of perfluorinated acid isomers in Sprague–Dawley rats; part 1: single dose. Environ Toxicol Chem 28:542–554

    Article  CAS  Google Scholar 

  14. De Silva AO, Benskin JP, Martin LJ, Arsenault G, McCrindle R, Riddell N, Martin JW, Mabury SA (2009) Disposition of perfluorinated acid isomers in Sprague–Dawley rats; part 2: subchronic dose. Environ Toxicol Chem 28:555–567

    Article  Google Scholar 

  15. De Silva AO, Tseng PJ, Mabury SA (2009) Toxicokinetics of perfluorocarboxylate isomers in rainbow trout. Environ Toxicol Chem 28:330–337

    Article  Google Scholar 

  16. Karrman A, Elgh-Dalgren K, Lafossas C, Moskeland T (2011) Environmental levels and distribution of structural isomers of perfluoroalkyl acids after aqueous fire-fighting foam (AFFF) contamination. Environ Chem 8:372–380

    Article  Google Scholar 

  17. De Silva AO, Muir DCG, Mabury SA (2009) Distribution of perfluorocarboxylate isomers in select samples from the North American environment. Environ Toxicol Chem 28:1801–1814

    Article  Google Scholar 

  18. Montero-Campillo MM, Mora-Diez N, Lamsabhi AM (2010) Thermodynamic stability of neutral and anionic PFOS: a gas-phase, n-octanol, and water theoretical study. J Phys Chem A 114:10148–10155

    Article  CAS  Google Scholar 

  19. Liu P, Goddard JD, Arsenault G, Gu J, McAlees A, McCrindle R, Robertson V (2007) Theoretical studies of the conformations and F-19 NMR spectra of linear and a branched perfluorooctanesulfonamide (PFOSAmide). Chemosphere 69:1213–1220

    Article  CAS  Google Scholar 

  20. Rayne S, Forest K, Friesen KJ (2008) Relative gas-phase free energies for the C(3) through C(8) linear and branched perfluorinated sulfonic acids: implications for kinetic versus thermodynamic control during synthesis of technical mixtures and predicting congener profile inputs to environmental systems. J Mol Struct Theochem 869:81–82

    Article  CAS  Google Scholar 

  21. Torres FJ, Ochoa-Herrera V, Blowers P, Sierra-Alvarez P (2009) Ab initio study of the structural, electronic, and thermodynamic properties of linear perfluorooctane sulfonate (PFOS) and its branched isomers. Chemosphere 76:1143–1149

    Article  CAS  Google Scholar 

  22. Rayne S, Forest K (2009) Comment on “Ab initio study of the structural, electronic, and thermodynamic properties of linear perfluorooctane sulfonate (PFOS) and its branched isomers” by FJ Torres, V. Ochoa-Herrera, P. Blowers, R. Sierra-Alvarez [Chemosphere 76 (8) (2009) 1143–1149]. Chemosphere 77:1455–1456

    Article  CAS  Google Scholar 

  23. Ipatieff VN, Grosse AV (1936) Action of aluminum chloride on paraffins: autodestructive alkylation. Ind Eng Chem 28:461–464

    Article  CAS  Google Scholar 

  24. Olah GA, Molnur A (1995) Hydrocarbon chemistry. Wiley, New York

    Google Scholar 

  25. Afeefy HY, Liebman JF, Stein SE (1996) Neutral thermochemical data: NIST chemistry webbook. NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg

  26. Fliszar S (1983) Charge distribution and chemical effects. Springer, Berlin

    Book  Google Scholar 

  27. Ess DH, Liu S, De Proft F (2010) Density functional steric analysis of linear and branched alkanes. J Phys Chem A 114:12952–12957

    Article  CAS  Google Scholar 

  28. Giroday T, Montero-Campillo MM, Mora-Diez N (2014) Thermodynamic stability of PFOS: M06-2X and B3LYP comparison. Comput Theor Chem 1046:81–92

    Article  CAS  Google Scholar 

  29. Wiberg KB (1991) Substituent effects. 2. n-butyl and tert-butyl derivatives. J Org Chem 56:544–550

    Article  CAS  Google Scholar 

  30. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  31. Raghavachari K, Stefanov BB, Curtiss LA (1997) Accurate density functional thermochemistry for larger molecules. Mol Phys 91:555–559

    Article  CAS  Google Scholar 

  32. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys 106:1063–1079

    Article  CAS  Google Scholar 

  33. Saeys M, Reyniers MF, Marin GB, van Speybroeck V, Waroquier J (2003) Ab initio calculations for hydrocarbons: enthalpy of formation, transition state geometry, and activation energy for radical reactions. J Phys Chem A 107:9147–9159

    Article  CAS  Google Scholar 

  34. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  35. Feng Y, Liu L, Wang JT, Huang H, Guo QX (2003) Assessment of experimental bond dissociation energies using composite ab initio methods and evaluation of the performances of density functional methods in the calculation of bond dissociation energies. J Chem Inf Comput Sci 43:2005–2013

    Article  CAS  Google Scholar 

  36. Izgorodina EI, Coote ML, Radom L (2005) Trends in R–X bond dissociation energies (R = Me, Et, i-Pr, t-Bu; X = H, CH3, OCH3, OH, F): a surprising shortcoming of density functional theory. J Phys Chem A 109:7558–7566

    Article  CAS  Google Scholar 

  37. Schwabe T, Grimme S (2007) Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Phys Chem Chem Phys 9:3397–3406

    Article  CAS  Google Scholar 

  38. Rayne S, Forest K (2010) Comparative semiempirical, ab initio, and density functional theory study on the thermodynamic properties of linear and branched perfluoroalkyl sulfonic acids/sulfonyl fluorides, perfluoroalkyl carboxylic acid/acyl fluorides, and perhydroalkyl sulfonic acids, alkanes, and alcohols. J Mol Struct Theochem 941:107–118

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian, Inc., Wallingford

    Google Scholar 

  40. Becke AD (1993) Density functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  41. Lee C, Yang WT, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  42. Vydrov OA, Scuseria GE (2006) Assessment of a long-range corrected hybrid functional. J Chem Phys 125:234109

    Article  Google Scholar 

  43. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  44. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213

    Article  CAS  Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  46. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple (vol 77, pg 3865, 1996). Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  47. Zhao Y, Truhlar DA (2006) Density functional that accounts for medium-range correlation energies in organic chemistry. Org Lett 8:5753–5755

    Article  CAS  Google Scholar 

  48. Huenerbein R, Schirmer B, Moellmann J, Grimme S (2010) Effects of London dispersion on the isomerisation reactions of large organic molecules: a density functional benchmark study. Phys Chem Chem Phys 12:6940–6948

    Article  CAS  Google Scholar 

  49. Rayne S, Forest K (2010) Theoretical studies on the pKa values of perfluoroalkyl carboxylic acids. J Mol Struct Theochem 948:102–107

    Article  CAS  Google Scholar 

  50. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382

    Article  Google Scholar 

  51. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  52. Ellis DA, Denkenberger KA, Burrow TE, Mabury SA (2004) The use of F-19 NMR to interpret the structural properties of perfluorocarboxylate acids: A possible correlation with their environmental disposition. J Phys Chem A 108:10099–10106

    Article  CAS  Google Scholar 

  53. Wodrich MD, Wannere CS, Mo Y, Jarowski PD, Houk KN, Schleyer PVR (2007) The concept of protobranching and its many paradigm shifting implications for energy evaluations. Chem Eur J 13:7731–7744

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support and would like to thank Information Technology Services at Thompson Rivers University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelaine Mora-Diez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidalgo, A., Giroday, T. & Mora-Diez, N. Thermodynamic stability of neutral and anionic PFOAs. Theor Chem Acc 134, 124 (2015). https://doi.org/10.1007/s00214-015-1725-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1725-4

Keywords

Navigation