Skip to main content
Log in

Second-order Møller–Plesset perturbation (MP2) theory at finite temperature: relation with Surján’s density matrix MP2 and its application to linear-scaling divide-and-conquer method

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In 2005, Surján showed two explicit formulas for evaluating the second-order Møller–Plesset perturbation (MP2) energy as a functional of the Hartree–Fock density matrix \(\varvec{D}\) (Chem Phys Lett 406:318, 2005), which are referred to as the \(\Delta E_\text {MP2}[\varvec{D}]\) functionals. In this paper, we present the finite-temperature (FT) MP2 energy functionals of the FT Hartree–Fock density matrix. There are also two formulas for the FT-MP2, namely the conventional and renormalized ones; the latter of which has recently been formulated by Hirata and He (J Chem Phys 138:204112, 2013). We proved that there exists one-to-one correspondence between the formulas of two FT-MP2 and the \(\Delta E_\text {MP2}[\varvec{D}]\) functionals. This fact can explain the different behavior of two \(\Delta E_\text {MP2}[\varvec{D}]\) functionals when an approximate Hartree–Fock density matrix is applied, which was previously investigated by Kobayashi and Nakai (Chem Phys Lett 420:250, 2006). We also applied the FT-MP2 formalisms to the linear-scaling divide-and-conquer method for improving the accuracy with tiny addition of the computational efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Helgaker T, Jørgensen P, Olsen J (2002) Molecular electronic-structure theory. Wiley, Chichester

    Google Scholar 

  2. Rolik Z, Szabados Á, Surján PR (2003) J Chem Phys 119:1922

    Article  CAS  Google Scholar 

  3. Szabados Á, Rolik Z, Tóth G, Surján PR (2005) J Chem Phys 122:114104

    Article  Google Scholar 

  4. Surján P, Rolik Z, Szabados Á, Kőhalmi D (2004) Ann Phys 13:223

    Article  Google Scholar 

  5. Kobayashi M, Szabados Á, Nakai H, Surján PR (2010) J Chem Theory Comput 6:2024

    Article  CAS  Google Scholar 

  6. Szabados Á, Nagy P (2011) J Phys Chem A 115:523

    Article  CAS  Google Scholar 

  7. Surján PR (1999) An introduction to the theory of geminals. In: Surján PR (ed) Correlation and localization. Springer, Berlin, pp 63–88

    Chapter  Google Scholar 

  8. Jeszenszki P, Nagy PR, Zoboki T, Szabados Á, Surján PR (2014) Int J Quantum Chem 114:1048

    Article  CAS  Google Scholar 

  9. Tarumi M, Kobayashi M, Nakai H (2012) J Chem Theory Comput 8:4330

    Article  CAS  Google Scholar 

  10. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  11. Shavitt I, Bartlett RJ (2009) Many-body methods in chemistry and physics: MBPT and coupled-cluster theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  12. Tsuneda T (2014) Density functional theory in quantum chemistry. Springer, Tokyo

    Book  Google Scholar 

  13. Engel E, Dreizler RM (2011) Density functional theory: an advanced course. Springer, Heidelberg

    Book  Google Scholar 

  14. Surján PR (2005) Chem Phys Lett 406:318

    Article  Google Scholar 

  15. Almlöf J (1991) Chem Phys Lett 181:319

    Article  Google Scholar 

  16. Häser M (1993) Theor Chim Acta 87:147

    Article  Google Scholar 

  17. Ayala PY, Scuseria GE (1999) J Chem Phys 110:3660

    Article  CAS  Google Scholar 

  18. Kobayashi M, Nakai H (2006) Chem Phys Lett 420:250

    Article  CAS  Google Scholar 

  19. Surján PR, Szabados Á (2011) Perturbative approximations to avoid matrix diagonalization. In: Papadopoulos MG, Zalesny R, Mezey PG, Leszczynski J (eds) Linear-scaling techniques in computational chemistry and physics: methods and applications. Springer, Dordrecht, pp 83–95

    Chapter  Google Scholar 

  20. Kobayashi M, Nakai H (2011) Divide-and-conquer approaches to quantum chemistry: theory and implementation. In: Papadopoulos MG, Zalesny R, Mezey PG, Leszczynski J (eds) Linear-scaling techniques in computational chemistry and physics: methods and applications. Springer, Dordrecht, pp 97–127

    Chapter  Google Scholar 

  21. Kobayashi M, Nakai H (2012) Phys Chem Chem Phys 14:7629

    Article  CAS  Google Scholar 

  22. Akama T, Kobayashi M, Nakai H (2007) J Comput Chem 28:2003

    Article  CAS  Google Scholar 

  23. Yang W (1991) Phys Rev Lett 66:1438

    Article  CAS  Google Scholar 

  24. Yang W, Lee TS (1995) J Chem Phys 103:5674

    Article  CAS  Google Scholar 

  25. Kobayashi M, Akama T, Nakai H (2006) J Chem Phys 125:204106

    Article  Google Scholar 

  26. Kobayashi M, Imamura Y, Nakai H (2007) J Chem Phys 127:074103

    Article  Google Scholar 

  27. Kobayashi M, Nakai H (2008) J Chem Phys 129:044103

    Article  Google Scholar 

  28. Kobayashi M, Nakai H (2009) J Chem Phys 131:114108

    Article  Google Scholar 

  29. Yoshikawa T, Kobayashi M, Nakai H (2013) Int J Quantum Chem 113:218

    Article  CAS  Google Scholar 

  30. Bloch C (1965) Diagram expansions in quantum statistical mechanics. In: de Boer J, Uhlenbeck GE (eds) Studies in statistical mechanics, vol 3. North-Holland, Amsterdam, pp 3–211

    Google Scholar 

  31. Blaizot JP, Ripka G (1985) Quantum theory of finite systems. The MIT Press, Cambridge

    Google Scholar 

  32. Hirata S, He X (2013) J Chem Phys 138:204112

    Article  Google Scholar 

  33. Kohn W, Luttinger JM (1960) Phys Rev 118:41

    Article  Google Scholar 

  34. Matsubara T (1955) Prog Theor Phys 14:351

    Article  Google Scholar 

  35. Thouless DJ (1957) Phys Rev 107:1162

    Article  Google Scholar 

  36. Cremer D (2011) WIREs Comput Mol Sci 1:509

    Article  CAS  Google Scholar 

  37. Lipparini E (2008) Modern many-particle physics, 2nd edn. World Scientific, Singapore

    Book  Google Scholar 

  38. Thouless DJ (1972) The quantum mechanics of many-body systems, 2nd edn. Academic Press, New York

    Google Scholar 

  39. Cohen AJ, Mori-Sánchez P, Yang W (2009) J Chem Theory Comput 5:786

    Article  CAS  Google Scholar 

  40. Mattuck RD (1976) A guide to Feynman diagrams in the many-body problem. McGraw-Hill, New York

    Google Scholar 

  41. Yoshikawa T, Kobayashi M, Nakai H (2011) Theor Chem Acc 130:411

    Article  CAS  Google Scholar 

  42. Yoshikawa T, Nakai H (2015) Theor Chem Acc 134:53

    Article  Google Scholar 

  43. Mezey PG (1995) J Math Chem 18:141

    Article  CAS  Google Scholar 

  44. Szekeres Z, Mezey PG, Surján PR (2006) Chem Phys Lett 424:420

    Article  CAS  Google Scholar 

  45. Nakai H (2002) Chem Phys Lett 363:73

    Article  CAS  Google Scholar 

  46. Kobayashi M, Nakai H (2009) Int J Quantum Chem 109:2227

    Article  CAS  Google Scholar 

  47. Kobayashi M, Nakai H (2013) J Chem Phys 138:044102

    Article  Google Scholar 

  48. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  49. Gordon MS, Schmidt MW (2005) Advances in electronic structure theory: gamess a decade later. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first forty years. Elsevier, Amsterdam, pp 1167–1189

    Chapter  Google Scholar 

  50. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213

    Article  CAS  Google Scholar 

  51. Sidje RB (1998) ACM Trans Math Software 24:130

    Article  Google Scholar 

  52. Akama T, Kobayashi M, Nakai H (2009) Int J Quantum Chem 109:2706

    Article  CAS  Google Scholar 

  53. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Hiromi Nakai and Dr. Takeshi Yoshikawa (Waseda University) for their valuable comments. Some of the present calculations were performed using the computer facilities at Research Center for Computational Science, Okazaki, and at Research Institute for Information Technology, Kyushu University, Japan. This work was supported in part by JSPS KAKENHI Grant No. 25810011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Kobayashi.

Additional information

Published as part of the special collection of articles “Festschrift in honour of P. R. Surjan”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, M., Taketsugu, T. Second-order Møller–Plesset perturbation (MP2) theory at finite temperature: relation with Surján’s density matrix MP2 and its application to linear-scaling divide-and-conquer method. Theor Chem Acc 134, 107 (2015). https://doi.org/10.1007/s00214-015-1710-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1710-y

Keywords

Navigation