Skip to main content

Hydrocarbon chains and rings: bond length alternation in finite molecules

Abstract

We present a theoretical study of Peierls distortion in carbon rings. We demonstrate using the Longuet-Higgins–Salem model that the appearance of bond alternation in conjugated carbon polymers is independent of the boundary conditions and does in fact appear in carbon rings just as in carbon chains. We use the Hartree–Fock approximation and density functional theory to show that this behaviour is retained at the first principles level.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. Developing the model and the corresponding HUGEH code and applying it to various conjugated polymers was a very fruitful collaboration between P.R. Surján and J. Kürti.

References

  1. Peierls RE, Peierls SRE (1955) Quantum theory of solids. Clarendon Press, Oxford

    Google Scholar 

  2. Roth S, Carroll D (2004) One-dimensional metals: conjugated polymers, organic crystals, carbon nanotubes. Wiley, London

    Book  Google Scholar 

  3. Rusznyák Á, Zólyomi V, Kürti J, Yang S, Kertesz M (2005) Bond-length alternation and charge transfer in a linear carbon chain encapsulated within a single-walled carbon nanotube. Phys Rev B 72(15):155420(6)

  4. Yang S, Kertesz M (2006) Bond length alternation and energy band gap of polyyne. J Phys Chem A 110(31):9771–9774

    CAS  Article  Google Scholar 

  5. Körzdörfer T, Parrish RM, Sears JS, Sherrill CD, Brédas J-L (2012) On the relationship between bond-length alternation and many-electron self-interaction error. J Chem Phys 137(12):124305(8)

  6. Al-Backri A, Zólyomi V, Lambert CJ (2014) Electronic properties of linear carbon chains: resolving the controversy. J Chem Phys 140(10):104306(4)

    Article  Google Scholar 

  7. Longuet-Higgins HC, Salem L (1959) The alternation of bond lengths in long conjugated chain molecules. Proc R Soc Lond A Math Phys Eng Sci 251(1265):172–185

    CAS  Article  Google Scholar 

  8. Kürti J, Surján PR (1992) Embedded units in conjugated polymers. J Math Chem 10(1):313–327

    Article  Google Scholar 

  9. Su WP, Schrieffer JR, Heeger AJ (1980) Soliton excitations in polyacetylene. Phys Rev B 22(4):2099–2111

    CAS  Article  Google Scholar 

  10. Heeger AJ, Kivelson S, Schrieffer JR, Su WP (1988) Solitons in conducting polymers. Rev Mod Phys 60:781–851

    CAS  Article  Google Scholar 

  11. Surján PR, Kuzmany H (1986) Interruption of conjugations of polyacetylene chains. Phys Rev B 33(4):2615–2624

    Article  Google Scholar 

  12. Sun G, Kürti J, Rajczy P, Kertesz M, Hafner J, Kresse G (2003) Performance of the Vienna ab initio simulation package (VASP) in chemical applications. J Mol Struct THEOCHEM 624(1–3):37–45

    CAS  Article  Google Scholar 

  13. Chalifoux WA, Tykwinski RR (2010) Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nat Chem 2(11):967–971

    CAS  Article  Google Scholar 

  14. Kirby C, Kroto HW, Walton DRM (1980) The microwave spectrum of cyanohexatriyne, HCCCCCCCN. J Mol Spectrosc 83(2):261–265

    CAS  Article  Google Scholar 

  15. Watts JD, Bartlett RJ (1992) A theoretical study of linear carbon cluster monoanions, C-n, and dianions, C2-n (n = 2–10). J Chem Phys 97(5):3445–3457

    CAS  Article  Google Scholar 

  16. Monninger G, Förderer M, Gürtler P, Kalhofer S, Petersen S, Nemes L, Szalay PG, Krätschmer W (2002) Vacuum ultraviolet spectroscopy of the carbon molecule C3 in matrix isolated state: experiment and theory. J Phys Chem A 106(24):5779–5788

    CAS  Article  Google Scholar 

  17. Zhao C, Kitaura R, Hara H, Irle S, Shinohara H (2011) Growth of linear carbon chains inside thin double-wall carbon nanotubes. J Phys Chem C 115(27):13,166–13,170

    CAS  Article  Google Scholar 

  18. Kastner J, Kuzmany H, Kavan L, Dousek FP, Kürti J (1995) Reductive preparation of carbyne with high yield. An in situ Raman scattering study. Macromolecules 28(1):344–353

    CAS  Article  Google Scholar 

  19. Heimann R, Evsyukov SE, Kavan L (2012) Carbyne and carbynoid structures. Springer, Berlin

    Google Scholar 

  20. Kürti J, Kuzmany H (1991) Resonance Raman scattering from finite and infinite polymer chains. Phys Rev B 44(2):597–613

    Article  Google Scholar 

  21. Choi CH, Kertesz M (1998) Bond length alternation and aromaticity in large annulenes. J Chem Phys 108(16):6681–6688

    CAS  Article  Google Scholar 

  22. Wannere CS, Sattelmeyer KW, Schaefer HF, Schleyer PvR (2004) Aromaticity: the alternating C–C bond length structures of [14]-, [18]-, and [22]annulene. Angew Chem Int Ed 43:4200–4206

    CAS  Article  Google Scholar 

  23. Kertész M, Surján PR (1981) Trapping of phase kinks in polyacetylene. Solid State Commun 39(5):611–614

    Article  Google Scholar 

  24. Kürti J, Kuzmany H (1987) Conjugation length and localization in conjugated polymers. In: Kuzmany PDH, Mehring PDM, Roth DS (eds) Springer series in solid-state sciences, vol 76., Electronic properties of conjugated polymersSpringer, Berlin, pp 43–47

    Google Scholar 

  25. Kürti J, Surján PR (1989) Quinoid-aromatic transition in polythiophene-like systems. In: Kuzmany H, Mehring M, Roth S (eds) Electronic properties of conjugated polymers III: basic models and applications: proceedings of an International Winter School, Kirchberg, Tirol, March 11-18, 1989, no. 91 in Springer series in solid-state sciences. Springer, Berlin, p 69

  26. Coulson CA (1951) Bond lengths in conjugated molecules: the present position. Proc R Soc Lond A Math Phys Eng Sci 207(1088):91–100

    CAS  Article  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford CT

  28. Schaman C, Pfeiffer R, Zólyomi V, Kuzmany H, Ajami D, Herges R, Dubay O, Sloan J (2006) The transformation of open picotubes to a closed molecular configuration. Phys Status Solidi B 243:3151–3154

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from OTKA in Hungary (Grant Number K108676). Je.K. acknowledges beneficial discussions with Sándor Pekker. The authors express their gratitude to Péter Surján on the occasion of Péter’s 60th birthday. Jenő Kürti remembers with pleasure to the many joint works with Péter which resulted in more than ten joint publications, started from 1989.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenő Kürti.

Additional information

Published as part of the special collection of articles “Festschrift in honour of P. R. Surjan”.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kürti, J., Koltai, J., Gyimesi, B. et al. Hydrocarbon chains and rings: bond length alternation in finite molecules. Theor Chem Acc 134, 114 (2015). https://doi.org/10.1007/s00214-015-1709-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1709-4

Keywords

  • Peierls distortion
  • Conjugated polymers
  • Annulenes
  • Longuet-Higgins–Salem model
  • Density functional theory