Abstract
NO–Imi–H2O complexes can be used as models to investigate the interactions of histidine with nitric oxide and water in biological systems like myoglobin. We discuss here the water–imidazole, water–nitric oxide dimers and the trimolecular complexes of nitric oxide with water and imidazole from the donor–acceptor point of view using the natural bond orbitals and localized molecular orbital energy decomposition analysis schemes. The comparison between trimolecular and bimolecular complexes shows that in general, the stabilization energies are more sensitive to changes in the interactions of imidazole with water than to changes in the interactions with nitric oxide. The effect of imidazole ring protonation on the geometry and stabilization of the complexes is also investigated. We found that cooperative effects are more relevant in charged complexes and planar structures than in neutral species and nonplanar complexes. The driving forces governing the interactions between open and closed shell systems are also discussed with special emphasis on the role of lone pairs and unpaired electrons.
This is a preview of subscription content, access via your institution.








References
Muller-Dethlefs K, Hobza P (2000) Chem Rev 100(1):143–167
Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88(6):899–926
Hernández-Soto H, Weinhold F, Francisco JS (2007) J Chem Phys 127:164102
Crespo-Otero R, Sanchez-Garcia E, Suardiaz R, Montero LA, Sander W (2008) Chem Phys 353:193
Crespo-Otero R, Bravo-Rodriguez K, Roy S, Benighaus T, Thiel W, Sander W, Sanchez-Garcia E (2013) ChemPhysChem 14(4):805–811
Mardyukov A, Crespo-Otero R, Sanchez-Garcia E, Sander W (2010) Chem-Eur J 16(29):8679–8689
Mardyukov A, Sanchez-Garcia E, Crespo-Otero R, Sander W (2009) Angew Chem-Int Edit 48(26):4804–4807
Ziolo MT (2008) Nitric Oxide 18:153–156
Bian K, Doursout M, Murad F (2008) J Clin Hypertens (Greenwich) 10:304–310
McCleverty JA (2004) Chem Rev 104(2):403–418
Richter-Addo GB, Legzdins P, Burstyn J (2002) Chem Rev 102(4):857–859
Cybulski H, Fernández B (2012) J Phys Chem A 116:7319–7328
Sumiyoshi Y, Endo Y (2007) J Chem Phys 127:184309
Ershova OV, Besley NA (2012) J Chem Phys 136:244313
Bergeron DE, Musgrave A, Ayles VL, Gammon RT, Silber JAE, Wright TG (2006) J Chem Phys 125(14):144319
Bergeron DE, Musgrave A, Gammon RT, Ayles VL, Silber JAE, Wright TG, Wen B, Meyer H (2006) J Chem Phys 124(21):214302
Ivanic J, Schmidt MW, Luke B (2012) J Chem Phys 137:214316
Wen B, Meyer H (2009) J Chem Phys 131:034304
Akiike M, Tsuji K, Shibuya K, Obi K (1995) Chem Phys Lett 243(1–2):89–93
Crespo-Otero R, Montero LA, Stohrer W-D, Vega JMGDL (2005) J Chem Phys 123:134107
Daire SE, Lozeille J, Gamblin SD, Lee EPF, Wright TG (2001) Chem Phys Lett 346(3–4):305–312
Daire SE, Lozeille J, Gamblin SD, Wright TG (2000) J Phys Chem A 104(40):9180–9183
Daire SE, Lozeille J, Gamblin SD, Wright TG, Lee EPF (2001) Phys Chem Chem Phys 3(6):917–924
Lee EPF, Mack P, Wright TG (1997) Chem Phys 224(2–3):191–199
Lozeille J, Daire SE, Gamblin SD, Wright TG, Lee EPF (2000) J Chem Phys 113(24):10952–10961
Miller JC (1987) J Chem Phys 86(6):3166–3171
Myszkiewicz G, Sadlej J (2000) Chem Phys Lett 318(1–3):232–239
Møller JKS, Skibsted LH (2002) Chem Rev 102:1167
Li A, Cao Z, Li Y, Yan T, Shen P (2012) J Phys Chem B 116:12793–12800
Mangiatordi GF, Hermet J, Adamo C (2011) J Phys Chem A 115:2627–2634
Choi MY, Miller RE (2006) J Phys Chem A 110:9344–9351
Carles FL, Schermann JP, Desfrançois c (2000) J Phys Chem A 104:10662–10668
Adesokan AA, Chaban GM, Dopfer O, Gerber RB (2007) J Phys Chem A 111:7374–7381
Yan S, Bu AY (2004) J Phys Chem B 108:13874–13881
Cybulski H, Żuchowski PS, Fernández B, Sadlej J (2009) J Chem Phys 130:104303
Dozova N, Krim L, Alikhani ME, Lacome N (2006) J Phys Chem A 110:11617–11626
Crespo-Otero R, Bravo-Rodríguez K, Suardíaz R, Montero LA, Vega JMGDL (2009) J Phys Chem A 113(52):14595–14605
Zhao Y, Schultz NE, Truhlar DG (2005) J Chem Phys 123:161103
Frisch MJ, T GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, PopleJA (2004) Gaussian 03, Revision E01, Gaussian, Inc, Wallingford CT
Folmer DE, Poth L, Wisniewski ES, Castleman AW Jr (1998) Chem Phys Lett 287(1–2):1–7
Su P, Li H (2009) J Chem Phys 131(1):014102
Boys SF, Bernardi F (1970) Mol Phys 19: 553–566
Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comp Chem 14(11):1347–1363
Crespo-Otero R, Perez-Badell Y, Padron-Garcia A, Montero AL (2007) Theor Chem Acc 118(3):649
Bael MKVASJ, Schoone K, Houben L, McCarthy W, Adamowicz L, Nowak MJ, Maes G (1997) J Phys Chem A 101:2397–2413
Acknowledgments
R.C-O and R.S acknowledge a research fellowship from Universidad Autónoma de Madrid. E.S-G and K.B-R acknowledge Liebig and doctoral stipends, respectively, from the Fonds der Chemischen Industrie, Germany. E.S-G acknowledges the support of the Cluster of Excellence RESOLV (EXC 1069) and the Collaborative Research Center SFB 1093, both funded by the Deutsche Forschungsgemeinschaft. J.M.GV thanks MICINN (Project No. CTQ2010-12932) and AECID (Project No. A1/035856/11). Computer time provided by the Centro de Computación Científica of Universidad Autónoma de Madrid is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
214_2015_1691_MOESM1_ESM.docx
Supplementary Information Available: Tables of interaction energies, NBO donor–acceptor interactions, LMOEDA analyses (DOCX 859 kb)
Rights and permissions
About this article
Cite this article
Martinez Gonzalez, M., Bravo-Rodriguez, K., Suardiaz, R. et al. Complexes of nitric oxide with water and imidazole. Theor Chem Acc 134, 88 (2015). https://doi.org/10.1007/s00214-015-1691-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00214-015-1691-x
Keywords
- Nitric oxide
- Imidazole
- Water
- NBO
- DFT
- Energy decomposition analysis
- Heterodimers
- Trimers