Skip to main content
Log in

A study of the compactness of wave functions based on Shannon entropy indices: a seniority number approach

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This work reports the formulation of Shannon entropy indices in terms of seniority numbers of the Slater determinants expanding an N-electron wave function. Numerical determinations of those indices prove that they provide a suitable quantitative procedure to evaluate compactness of wave functions and to describe their configurational structures. An analysis of the results, calculated for full configuration interaction wave functions in selected atomic and molecular systems, allows one to compare and to discuss the behavior of several types of molecular orbital basis sets in order to achieve more compact wave function expansions, and to study their multiconfigurational character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shavitt I (1998) Mol Phys 94:3

    Article  CAS  Google Scholar 

  2. Sherrill CD, Schaefer HF III (1999) Adv Quantum Chem 34:143 and references therein

    Article  CAS  Google Scholar 

  3. Bytautas L, Ivanic J, Ruedenberg K (2003) J Chem Phys 119:8217

    Article  CAS  Google Scholar 

  4. Giesbertz KJH (2014) Chem Phys Lett 591:220

    Article  CAS  Google Scholar 

  5. Bytautas L, Henderson TM, Jiménez-Hoyos CA, Ellis JK, Scuseria GE (2011) J Chem Phys 135:044119

    Article  Google Scholar 

  6. Alcoba DR, Torre A, Lain L, Massaccesi GE, Oña OB (2013) J Chem Phys 139:084103

    Article  Google Scholar 

  7. Stein T, Henderson TM, Scuseria GE (2014) J Chem Phys 140:214113

    Article  Google Scholar 

  8. Boguslawski K, Tecmer P, Limacher PA, Johnson PA, Ayers PW, Bultinck P, De Baerdemacker S, Van Neck D (2014) J Chem Phys 140:214114

    Article  Google Scholar 

  9. Alcoba DR, Torre A, Lain L, Massaccesi GE, Oña OB (2014) J Chem Phys 140:234103

    Article  Google Scholar 

  10. Limacher PA, Kim TD, Ayers PW, Johnson PA, De Baerdemacker S, Van Neck D, Bultinck P (2014) Mol Phys 5–6:853

    Article  Google Scholar 

  11. Alcoba DR, Torre A, Lain L, Oña OB, Capuzzi P, Van Raemdonck M, Bultinck P, Van Neck D (2014) J Chem Phys 141:244118

    Article  Google Scholar 

  12. Ring P, Schuck P (1980) The nuclear many-body problem. Springe, New York

    Book  Google Scholar 

  13. Koltun DS, Eisenberg JM (1988) Quantum mechanics of many degrees of freedom. Wiley, New York

    Google Scholar 

  14. Garza AJ, Jiménez-Hoyos CA, Scuseria GE (2013) J Chem Phys 138:134102

    Article  Google Scholar 

  15. Jiménez-Hoyos CA, Rodríguez-Guzmán R, Scuseria GE (2013) J Chem Phys 139:204102

    Article  Google Scholar 

  16. Evangelista FA (2014) J Chem Phys 140:124114

    Article  Google Scholar 

  17. Mentel LM, Van Meer R, Gritsenko OV, Baerends EJ (2014) J Chem Phys 140:214105

    Article  CAS  Google Scholar 

  18. Ivanov VV, Lyakh DI, Adamowicz L (2005) Mol Phys 103:2131

    Article  CAS  Google Scholar 

  19. Kullback S (1959) Information theory and statistics. Wiley, New York

    Google Scholar 

  20. Mathai AM, Tathie PN (1975) Basic concepts in information theory and statistics. Wiley, New York

    Google Scholar 

  21. Pfeiffer PE (1978) Concepts of probability theory. Dover, New York

    Google Scholar 

  22. Paldus J, Jeziorski B (1988) Theor Chim Acta 73:81

    Article  CAS  Google Scholar 

  23. Lain L, Torre A, Karwowski J, Valdemoro C (1988) Phys Rev A 38:2721

    Article  Google Scholar 

  24. Torre A, Lain L, Millan J (1993) Phys Rev A 47:923

    Article  Google Scholar 

  25. Lain L, Torre A (1995) Phys Rev A 52:2446

    Article  CAS  Google Scholar 

  26. Surjan PR (1989) Second quantized approach to quantum chemistry. Springer, Berlin

    Book  Google Scholar 

  27. Subotnik JE, Shao Y, Liang W, Head-Gordon M (2004) J Chem Phys 121:9220

    Article  CAS  Google Scholar 

  28. Jonhson RD III (ed) (2006) Computational chemistry comparison and benchmark database. NIST Standard reference database vol 101. http://www.srdata.nist.gov/cccbdb

  29. Roos JB, Larson M, Larson A, Orel AE (2009) Phys Rev A 80:112501

    Article  Google Scholar 

  30. Chakrabarti K, Tennyson J (2012) Eur Phys J 66:31

    Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  32. Crawford TD, Sherrill CD, Valeev EF, Fermann JT, King RA, Leininger ML, Brown ST, Janssen CL, Seidl ET, Kenny JP, Allen WD (2007) J Comput Chem 28:1610

    Article  CAS  Google Scholar 

  33. Weinhold F, Wilson EB (1967) J Chem Phys 46:2752

    Article  CAS  Google Scholar 

  34. Henderson TM, Bulik IW, Stein T, Scuseria GE (2014) J Chem Phys 141:244104

    Article  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the Grant Nos. GIU12/09 and UFI11/07 (Universidad del Pais Vasco, Spain), UBACYT 20020100100197 (Universidad de Buenos Aires, Argentina), PIP No. 11220090100061, 11220090100369, 11220130100377CO, and 11220130100311CO (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina). We thank the Universidad del País Vasco for allocation of computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Lain.

Additional information

Dedicated to Prof. P. R. Surjan on occasion of his 60th birthday.

Published as part of the special collection of articles “Festschrift in honour of P. R. Surjan.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lain, L., Torre, A., Alcoba, D.R. et al. A study of the compactness of wave functions based on Shannon entropy indices: a seniority number approach. Theor Chem Acc 134, 85 (2015). https://doi.org/10.1007/s00214-015-1688-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1688-5

Keywords

Navigation