Skip to main content
Log in

Europium-doped silicon clusters EuSi n (n = 3–11) and their anions: structures, thermochemistry, electron affinities, and magnetic moments

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The structures, electron affinities, and dissociation energies of EuSi n (n = 3–11) and their anions have been examined by means of four hybrid and pure density functional theory (DFT) methods. Basis sets used in this work are of segmented (SEG) Gaussian valence basis sets and relativistic small-core effective core potentials (ECP) with additional diffuse 2pdfg functions, denoted aug-SEG/ECP for Eu atoms and aug-cc-pVTZ for Si atoms. The geometries are fully optimized with each DFT method independently. The ground-state structures for all of these species are found to be substitutional type, which can be regarded as being derived from the ground-state structure of Si n+1 (and/or Si n+1 ) by replacing a Si atom with a Eu atom. The theoretical adiabatic electron affinities (AEAs) of EuSi n predicted by the four DFT schemes are in excellent agreement with the experimental data, especially the AEAs of TPSSh and B2PLYP. The average absolute deviations from experiment are by 0.10, 0.06, 0.07, and 0.05 eV, and the largest deviations are 0.16, 0.12, 0.18, and 0.10 eV at the B3LYP, TPSSh, PBE, and B2PLYP levels, respectively. The AEA of EuSi n (n = 3–11) is less than that of Si n . With the increase in silicon cluster size, the AEA of EuSi n may be close to that of Si n , but cannot be larger than that of Si n . The Eu atom acts as an electron donor, and the bonding between Eu and silicon clusters is ionic in nature. The bond between Eu and silicon clusters of neutral EuSi n (n = 3–11) is stronger than that of the anions. The total magnetic moments of EuSi n /EuSi n (n = 3–11) and the magnetic moments on the Eu atom do not quench, and the total magnetic moments are contributed by Eu atom. The dissociation energies of Eu atom from EuSi n and their anions have also been calculated to examine relative stabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Raghavachari K (1986) Theoretical study of small silicon clusters: equilibrium geometries and electronic structures of Sin (n = 2–7,10). J Chem Phys 84:5672–5686

    Article  CAS  Google Scholar 

  2. Yang JC, Xu WG, Xiao WS (2005) The small silicon clusters Sin (n = 2–10) and their anions: structures, thermochemistry, and electron affinities. J Mol Struct THEOCHEM 719:89–102

    Article  CAS  Google Scholar 

  3. Zhu X, Zeng XC (2003) Structures and stabilities of small silicon clusters: Ab initio molecular-orbital calculations of Si7–Si11. J Chem Phys 118:3558–3570

    Article  CAS  Google Scholar 

  4. Honea EC, Ogura A, Murray CA, Raghavachari K, Sprenger WO, Jarrold MF, Brown WL (1993) Raman spectra of size-selected silicon clusters and comparison with calculated structures. Nature (London) 366:42–44

    Article  CAS  Google Scholar 

  5. Li S, Zee RJV, Weltner W, Raghavachari K (1995) Si3–Si7 experimental and theoretical infrared spectra. Chem Phys Lett 243:275–280

    Article  CAS  Google Scholar 

  6. Raghavachari K, Rohlfing CM (1991) Electronic structures of the negative ions Si2 –Si10 : electron affinities of small silicon clusters. J Chem Phys 94:3670–3678

    Article  CAS  Google Scholar 

  7. Liu B, Lu ZY, Pan BC, Wang CZ, Ho KM, Shvartsburg AA, Jarrold MF (1998) Ionization of medium-sized silicon clusters and the geometries of the cations. J Chem Phys 109:9401–9409

    Article  CAS  Google Scholar 

  8. Zhu XL, Zeng XC, Lei YA, Pan B (2004) Structures and stability of medium silicon clusters. II. Ab initio molecular orbital calculations of Si12–Si20. J Chem Phys 120:8985–8995

    Article  CAS  Google Scholar 

  9. Kishi R, Kawamata H, Negishi Y, Iwata S, Nakajima A, Kaya K (1997) Geometric and electronic structures of silicon-sodium binary clusters. II. Photoelectron spectroscopy of Si n Na m cluster anions. J Chem Phys 107:10029–10043

    Article  CAS  Google Scholar 

  10. Kawamata H, Negishi Y, Kishi R, Iwata S, Nakajima A, Kaya K (1996) Photoelectron spectroscopy of silicon–fluorine binary cluster anions (Si n F m ). J Chem Phys 105:5369–5376

    Article  CAS  Google Scholar 

  11. Kutzelnigg W (1984) Chemical bonding in higher main group elements. Angew Chem Int Ed Engl 23:272–295

    Article  Google Scholar 

  12. Pak C, Kiracofe JCR, Schaefer HF (2000) Electron affinities of silicon hydrides: SiHn (n = 0–4) and Si2Hn (n = 0–6). J Phys Chem A 104:11232–11242

    Article  CAS  Google Scholar 

  13. Beck SM (1987) Studies of silicon cluster-metal atom compound formation in a supersonic molecular beam. J Chem Phys 87:4233–4234

    Article  CAS  Google Scholar 

  14. Koyasu K, Akutsu M, Mitsui M, Nakajima A (2005) Selective formation of MSi16 (M = Sc, Ti, and V). J Am Chem Soc 127:4998–4999

    Article  CAS  Google Scholar 

  15. Xu HG, Wu MM, Zhang ZG, Yuan JY, Sun Q, Zheng WJ (2012) Photoelectron spectroscopy and density functional calculations of CuSi n (n = 4–18) clusters. J Chem Phys 136:104308-1–104308-10

    Google Scholar 

  16. Fan HW, Yang JC, Lu W, Ning HM, Zhang QC (2010) Structures and electronic properties of beryllium atom encapsulated in Si (0,−1) n (n = 2–10) clusters. J Phys Chem A 114:1218–1223

    Article  CAS  Google Scholar 

  17. Tam NM, Tai TB, Nguyen MT (2012) Thermochemical parameters and growth mechanism of the boron-doped silicon clusters, Si n Bq with n = 1–10 and q = −1, 0, +1. J Phys Chem C 116:20086–20098

    Article  CAS  Google Scholar 

  18. Khanna SN, Rao BK, Jena P, Nayak SK (2003) Stability and magnetic properties of iron atoms encapsulated in Si clusters. Chem Phys Lett 373:433–438

    Article  CAS  Google Scholar 

  19. Wang JG, Zhao JJ, Ma L, Wang BL, Wang GH (2007) Structure and magnetic properties of cobalt doped Si n (n = 2–14) clusters. Phys Lett A 367:335–344

    Article  CAS  Google Scholar 

  20. Guo LJ, Zhao GF, Gu YZ, Liu X, Zeng Z (2008) Density-functional investigation of metal-silicon cage clusters MSin (M = Sc, Ti, V, Cr, Mn, Fe Co, Ni, Cu, Zn; n = 8–16). Phys Rev B 77:195417-1–195417-8

    Google Scholar 

  21. Li JR, Wang GH, Yao CH, Mu YW, Wan JG, Han M (2009) Structures and magnetic properties of Si n Mn (n = 1–15) clusters. J Chem Phys 130:164514-1–164514-9

    Google Scholar 

  22. Grubisic A, Wang HP, Ko YJ, Bowen KH (2008) Photoelectron spectroscopy of europium-silicon clusters anions, EuSi n (3 ≤ n≤17). J Chem Phys 129:054302-1–054302-5

    Article  Google Scholar 

  23. Grubisic A, Ko YJ, Wang HP, Bowen KH (2009) Photoelectron spectroscopy of Lanthanide-silicon cluster anions LnSi n (3 ≤ n≤13; Ln = Ho, Gd, Pr, Sm, Eu, Yb): prospect for magnetic silicon-based clusters. J Am Chem Soc 131:10783–10790

    Article  CAS  Google Scholar 

  24. Wang J, Liu Y, Li YC (2010) Magnetic silicon fullerene. Phys Chem Chem Phys 12:11428–11431

    Article  CAS  Google Scholar 

  25. Ohara M, Miyajima K, Pramann A, Nakajima A, Kaya K (2002) Geometric and electronic structures of terbium-silicon mixed clusters (TbSi n ; 6 ≤ n ≤ 16). J Phys Chem A 106:3702–3705

    Article  CAS  Google Scholar 

  26. Ohara M, Miyajima K, Pramann A, Nakajima A, Kaya K (2007) Geometric and electronic structures of terbium-silicon mixed clusters (TbSi n ; 6 ≤ n ≤ 16). J Phys Chem A 111:10884

    Article  CAS  Google Scholar 

  27. Koyasu K, Atobe J, Furuse S, Nakajima A (2008) Anion photoelectron spectroscopy of transition metal- and lanthanide metal-silicon clusters: MSi n (n = 6–20). J Chem Phys 129:214301-1–214301-7

    Article  Google Scholar 

  28. Cao TT, Feng XJ, Zhao LX, Liang X, Lei YM, Luo YH (2008) Structure and magnetic properties of La-doped Si n (n = 1–12, 24) clusters: a density functional theory investigation. Eur Phys J D 49:343–351

    Article  CAS  Google Scholar 

  29. Peng Q, Shen J (2008) Growth behavior of La@Si n (n = 1–21) metal-encapsulated clusters. J Chem Phys 128:084711-1–084711--11

    Article  Google Scholar 

  30. Zhao GF, Sun JM, Gu YZ, Wang YX (2009) Density-functional study of structural, electronic, and magnetic properties of the EuSi n (n = 1–13) clusters. J Chem Phys 131:114312-1–114312-7

    Google Scholar 

  31. Li CG, Pan LJ, Shao P, Ding LP, Feng HT, Luo DB, Liu B (2015) Structures, stabilities, and electronic properties of the neutral and anionic Si n Smλ (n = 1–9, λ = 0, −1) clusters: comparison with pure silicon clusters. Theor Chem Acc 134:34-1–34-11

    Google Scholar 

  32. Liu TG, Zhao GF, Wang YX (2011) Structural, electronic and magnetic properties of GdSi n (n = 1–17) clusters: a density functional study. Phys Lett A 375:1120–1127

    Article  CAS  Google Scholar 

  33. Liu TG, Zhang WQ, Li YL (2014) First-principles study on the structure, electronic and magnetic properties of HoSi n (n = 1–12, 20) clusters. Front Phys 9:210–218

    Article  CAS  Google Scholar 

  34. Zhao RN, Ren ZY, Guo P, Bai JT, Zhang CH, Han JG (2006) Geometries and electronic properties of the neutral and charged rare earth Yb-doped Si n (n = 1–6) clusters: a relativistic density functional investigation. J Phys Chem A 110:4071–4079

    Article  CAS  Google Scholar 

  35. Zhao RN, Han JG, Bai JT, Liu FY, Sheng LS (2010) A relativistic density functional study of Si n (n = 7–13) clusters with rare earth ytterbium impurity. Chem Phys 372:89–95

    Article  CAS  Google Scholar 

  36. Zhao RN, Han JG, Bai JT, Liu FY, Sheng LS (2010) The medium-sized charged YbSin ± (n = 7–13) clusters: a relativistic computational investigation. Chem Phys 378:82–87

    Article  CAS  Google Scholar 

  37. Cao TT, Zhao LX, Feng XJ, Lei YM, Luo YH (2009) Structural and electronic properties of LuSi n (n = 1–12) clusters: a density functional theory investigation. J Mol Struct THEOCHEM 895:148–155

    Article  CAS  Google Scholar 

  38. Wang HQ, Li HF (2014) A combined stochastic search and density functional theory study on the neutral and charged silicon-based clusters MSi6 (M = La, Ce, Yb and Lu). RSC Adv 4:29782–29793

    Article  CAS  Google Scholar 

  39. Li HF, Kuang XY, Wang HQ (2011) Probing the structural and electronic properties of lanthanide-metal-doped silicon clusters: M@Si6 (M = Pr. Gd, Ho). Phys Lett A 375:2836–2844

    Article  CAS  Google Scholar 

  40. Kumar V, Singh AK, Kawazoe Y (2006) Charged and magnetic fullerenes of silicon by metal encapsulation: Predictions from ab initio calculations. Phys Rev B 74:125411-1–125411-5

    Google Scholar 

  41. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  42. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  43. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  44. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  45. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401-1–146401-4

    Article  Google Scholar 

  46. Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) Comparative assessment of a new nonempirical density functional: molecules and hydrogen-bonded complexes. J Chem Phys 119:12129–12137

    Article  CAS  Google Scholar 

  47. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys 124:034108-1–034108-16

    Article  Google Scholar 

  48. Woon DE, Dunning TH (1993) Gaussian basis sets for use in correlated molecular calculations. II. The atoms aluminum through argon. J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  49. Cao X, Dolg M (2002) Segmented contraction scheme for small-core lanthanide pseudopotential basis sets. J Mol Struct THEOCHEM 581:139–147

    Article  CAS  Google Scholar 

  50. Buchachenko AA, Chalasiński G, Szeześniak MM (2007) Diffuse basis functions for small-core relativistic pseudopotential basis sets and static dipole polarizabilities of selected lanthanides La, Sm, Eu, Tm and Yb. Struct Chem 18:769–772

    Article  CAS  Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V et al (2010) Gaussian 09 revision C.01, Gaussian Inc, Wallingford

  52. Ning HM, Fan HW, Yang JC (2011) Probing the electronic structures and properties of neutral and charged CaSi n (n = 2–10) clusters using Gaussian-3 theory. Comput Theor Chem 967:141–147

    Article  Google Scholar 

  53. Fan HW, Ren ZQ, Yang JC, Hao DS, Zhang QC (2010) Study on structures and electronic properties of neutral and charged MgSi n (n = 2–10) clusters with a Gaussian-3 theory. J Mol Struct THEOCHEM 958:26–32

    Article  CAS  Google Scholar 

  54. Hao DS, Liu JR, Wu WG, Yang JC (2009) Study on structures and electron affinities of small potassium-silicon clusters Si n K (n = 2–8) and their anions with Gaussian-3 theory. Theor Chem Acc 124:431–437

    Article  CAS  Google Scholar 

  55. Xu C, Taylor TR, Burton GR, Neumark DM (1998) Vibrationally resolved photoelectron spectroscopy of silicon cluster anions Si n (n = 3–7). J Chem Phys 108:1395–1406

    Article  CAS  Google Scholar 

  56. Nakajima A, Taguwa T, Nakao K, Gomei M, Kishi R, Iwata S, Kaya K (1995) Photoelectron spectroscopy of silicon-carbon cluster anions (Si n C m ). J Chem Phys 103:2050–2057

    Article  CAS  Google Scholar 

  57. Ohara M, Koyasu K, Nakajima A, Kaya K (2003) Geometric and electronic structures of metal (M)-doped silicon clusters (M = Ti, Hf, Mo and W). Chem Phys Lett 371:470–490

    Article  Google Scholar 

  58. Cheshnovsky O, Yang SH, Pettiette CL, Craycraft MJ, Liu Y, Smalley RE (1987) Ultraviolet photoelectron spectroscopy of semiconductor clusters: silicon and germanium. Chem Phys Lett 138:119–124

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21263010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jucai Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wang, J. & Hao, Y. Europium-doped silicon clusters EuSi n (n = 3–11) and their anions: structures, thermochemistry, electron affinities, and magnetic moments. Theor Chem Acc 134, 81 (2015). https://doi.org/10.1007/s00214-015-1684-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1684-9

Keywords

Navigation