Skip to main content

Optoelectronic property analysis of MCrO4 (M = Ba, Sr) with a response to visible light irradiation

Abstract

Ternary MCrO4 (M = Ba, Sr) semiconductors are materials with a variety of photocatalyst and optoelectronic applications. We present detailed microscopic analyses based on first principles of the structure, the electronic properties and the optical absorption in which the difference between symmetrically non-equivalent atoms has been considered. The high absorption coefficients of these materials are split into chemical species contributions in accordance with the symmetry. The high optical absorption in these materials is mainly because of the Cr–O inter-species transitions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Wei Xia-Lin, Li-Chun Xu, Chen Yuan-Ping, Liu Li-Min (2013) Structural and electronic properties of BaCrO4 at high-pressures. Solid State Commun 155:45–48

    CAS  Article  Google Scholar 

  2. 2.

    Santamaría-Pérez D, Kumar RS, Dos santos-García AJ, Errandonea D, Chuliá-Jordán R, Saez-Puche R, Rodríguez-Hernández P, Muñoz A (2012) High-pressure transition to the post-barite phase in BaCrO4 hashemite. Phys Rev B 86:094116

    Article  Google Scholar 

  3. 3.

    Yin Jiang, Zou Zhigang, Ye Jinhua (2003) Photophysical and photocatalytic properties of new photocatalysts MCrO4: (M = Sr, Ba). Chem Phys Lett 378:24–28

    CAS  Article  Google Scholar 

  4. 4.

    Duesler EN, Foord EE (1986) Crystal structure of hashemite, BaCrO4, a barite structure type. Am Mineral 71:1217–1220

    CAS  Google Scholar 

  5. 5.

    Effenberger H, Pertlik F (1986) Four monazite type structures: comparison of SrCrO4, SrSeO4, PbCrO4: (crocoite) and PbSeO4. Zeitschrift fur Kristallographie 176:75–83

    CAS  Article  Google Scholar 

  6. 6.

    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  7. 7.

    Private modification of the SIESTA code, Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejon P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys: Condens Matter 14:2745–2779 and references therein

    Google Scholar 

  8. 8.

    Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44:943–954

    CAS  Article  Google Scholar 

  9. 9.

    Anisimov VI, Solovyev IV, Korotin MA, Czyyk MT, Sawatzky GA (1993) Density-functional theory and NiO photoemission spectra. Phys Rev B 48:16929–16934

    CAS  Article  Google Scholar 

  10. 10.

    Tablero C (2008) Representations of the occupation number matrix on the LDA/GGA+U method. J Phys: Condens Matter 20:325205

    Google Scholar 

  11. 11.

    Tablero C (2009) Effects of the orbital self-interaction in both strongly and weakly correlated systems. J Chem Phys 130:054903

    CAS  Article  Google Scholar 

  12. 12.

    O’Regan DD, Payne MC, Mostofi AA (2011) Subspace representations in Ab initio methods for strongly correlated systems. Phys Rev B 83:245124

    Article  Google Scholar 

  13. 13.

    Grisolía M, Rozier P, Benoit M (2011) Density functional theory investigations of the structural and electronic properties of Ag2V4O11. Phys Rev B 83:165111

    Article  Google Scholar 

  14. 14.

    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    CAS  Article  Google Scholar 

  15. 15.

    Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2003

    CAS  Article  Google Scholar 

  16. 16.

    Kleinman L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48:1425–1428

    CAS  Article  Google Scholar 

  17. 17.

    Bylander DM, Kleinman L (1990) 4f resonances with norm-conserving pseudopotentials. Phys Rev B 41:907–912

    CAS  Article  Google Scholar 

  18. 18.

    Sankey OF, Niklewski DJ (1989) Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. Phys Rev B 40:3979–3995

    Article  Google Scholar 

  19. 19.

    Green MA (2003) Third generation photovoltaics: advanced solar energy conversion. Springer, Berlin

    Google Scholar 

  20. 20.

    Luque A, Martí A (2003) Theoretical Limits of Photovoltaic Conversion. In: Luque A, Hegedus S (eds) Handbook of Photovoltaic Science and Engineering. Wiley, New Jersey

    Chapter  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Spanish projects PROMESA (ENE2012-37804-C02-01) and MADRID-PV (S2013/MAE-2780).

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Tablero.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tablero, C. Optoelectronic property analysis of MCrO4 (M = Ba, Sr) with a response to visible light irradiation. Theor Chem Acc 134, 72 (2015). https://doi.org/10.1007/s00214-015-1675-x

Download citation

Keywords

  • Optoelectronic properties
  • Semiconductors
  • Photovoltaics