Skip to main content
Log in

Dual fluorescence of 4-(dimethylamino)-pyridine: a comparative linear response TDDFT versus state-specific CASSCF study including solvent with the PCM model

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Two different theoretical approaches have been used for the description of the experimentally observed dual luminescence of 4-(dimethylamino)pyridine (DMAP), introducing solvent effects with the polarizable continuum model (PCM), which seems needed to represent the dual fluorescence in polar media. These approaches are the linear response time-dependent density functional theory (TDDFT) and the state-specific complete active space self-consistent field. Both levels of theory represent the expected planar high-energy and the twisted intramolecular charge transfer (ICT) low-energy excited-state structures in the presence of solvent (toluene and acetonitrile). The comparison between both approaches shows that the main distortion of the ICT state is similar for both cases, i.e. twisting to almost 90º of the pyridine ring and the dimethylamino planes, but that other secondary distortions are slightly different. In the case of the TDDFT approach, the geometry optimizations of DMAP in the ground and excited states have been carried out using the conventional linear response approach (LR-PCM) for the solvent inclusion. The LR-PCM and the specific state (SS-PCM) approaches have been used for the prediction of the excitation and emission energies of DMAP in toluene and acetonitrile. The prediction of the emission energies at TDDFT/LR-PCM and CASPT2/PCM (complete active space perturbation theory) levels agrees with the experimental ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The computation of conical intersections under the CASSCF framework is not available using the PCM in our available software. The CI points are approximated as state averaged optimizations in S1.

References

  1. Lippert E, Lüder W, Moll F, Nägele W, Boos H, Prigge H, Seibold-Blankenstein I (1961) Angew Chem Int Ed Engl 73:695

    Article  CAS  Google Scholar 

  2. Chandross EA, Thomas HT (1971) Chem Phys Lett 9:397

    Article  CAS  Google Scholar 

  3. Chandross EA (1975) The exciplex. Academic Press, New York

    Google Scholar 

  4. Visser RJ, Varma CAGO (1980) J Chem Soc Faraday Trans 76:453

    Article  CAS  Google Scholar 

  5. Visser RJ, Varma CAGO, Konijnenberg J, Bergwerf P (1983) J Chem Soc. Faraday Trans 79:347

    Article  CAS  Google Scholar 

  6. Visser RJ, Varma CAGO, Konijnenberg J, Weisenborn PCM (1984) J Mol Struct 114:105

    Article  CAS  Google Scholar 

  7. Khalil OS, Hofeldt RH, McGlynn SP (1972) Chem Phys Lett 17:479

    Article  CAS  Google Scholar 

  8. Khalil OS, Hofeldt RH, McGlynn SP (1973) J Lumin 6:229

    Article  CAS  Google Scholar 

  9. Khalil OS, Hofeldt RH, McGlynn SP (1973) Spectrosc Lett 6:147

    Article  CAS  Google Scholar 

  10. Rotkiewicz K, Grellmann KH, Grabowski ZR (1973) Chem Phys Lett 19:315

    Article  CAS  Google Scholar 

  11. Kosower EM, Dodiuk H (1976) J Am Chem Soc 98:924

    Article  CAS  Google Scholar 

  12. Cazeau-Dubroca C, Peirigua A, Lyazidi SA, Nouchi G (1983) Chem Phys Lett 98:511

    Article  CAS  Google Scholar 

  13. Cazeau-Dubroca C, Ait Lyazidi S, Nouchi G, Peirigua A (1986) Nouv J Chim 10:337

    CAS  Google Scholar 

  14. Sobolewski AL, Domcke W (1996) Chem Phys Lett 259:119

    Article  CAS  Google Scholar 

  15. Sobolewski AL, Domcke W (1996) Chem Phys Lett 250:428

    Article  CAS  Google Scholar 

  16. Schuddeboom W, Jonker SA, Warman JM, Leinhos U, Kühnle W, Zachariasse KA (1992) J Phys Chem 96:10809

    Article  CAS  Google Scholar 

  17. Zachariasse KA (2000) Chem Phys Lett 320:8

    Article  CAS  Google Scholar 

  18. Guido CA, Mennucci B, Jacquemin D, Adamo C (2010) Phys Chem Chem Phys 12:8016

    Article  CAS  Google Scholar 

  19. Szydlowska I, Kyrychenko A, Gorski A, Waluk J, Herbich J (2003) Photochem Photobiol Sci 2:187

    Article  CAS  Google Scholar 

  20. Szydlowska I, Kyrychenko A, Nowacki J, Herbich J (2003) Phys Chem Chem Phys 5:1032

    Article  CAS  Google Scholar 

  21. Jamorski Jödicke C, Lüthi HP (2003) Chem Phys Lett 368:561

    Article  Google Scholar 

  22. Zilberg S, Haas Y (2002) J Phys Chem A 106:1

    Article  CAS  Google Scholar 

  23. Dreyer J, Kummrow A (2000) J Am Chem Soc 122:2577

    Article  CAS  Google Scholar 

  24. Serrano-Andres L, Merchan M, Roos BO, Lindh R (1995) J Am Chem Soc 117:3189

    Article  CAS  Google Scholar 

  25. Rappoport D, Furche F (2004) J Am Chem Soc 126:1277

    Article  CAS  Google Scholar 

  26. Köhn A, Hättig C (2004) J Am Chem Soc 126:7399

    Article  Google Scholar 

  27. Galván IF, Martín ME, Aguilar MA (2010) J Chem Theory Comput 6:2445

    Article  Google Scholar 

  28. Herbich J, Grabowski ZR, Wójtowicz H, Golankiewicz K (1989) J Phys Chem 93:3439

    Article  CAS  Google Scholar 

  29. Mishina S, Takayanagi M, Nakata M, Otsuki J, Araki K (2001) J Photochem Photobiol A Chem 141:153

    Article  CAS  Google Scholar 

  30. Pedone A (2013) J Chem Comput Theory 9:4087

    Article  CAS  Google Scholar 

  31. Cammi R, Corni S, Mennucci B, Tomasi J (2005) J Chem Phys 122:104513

    Article  CAS  Google Scholar 

  32. Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V (2006) J Chem Phys 124:094107

    Article  Google Scholar 

  33. Sampedro D (2011) In: Maes KJ, Willems JM (eds) Photochemistry: UV/VIS spectroscopy, photochemical reactions, and photosynthesis. Nova Science Publishers, Hauppauge

    Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  35. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) J Chem Phys 120:8425

    Article  CAS  Google Scholar 

  36. Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) Chem Phys Lett 294:143

    Article  CAS  Google Scholar 

  37. Karlström G, Lindh R, Malmqvist PÅ, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) Comput Mater Sci 28:222

    Article  Google Scholar 

  38. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

  39. Widmark P, Malmqvist P, Roos BO (1990) Theory Chem Acc 77:291

    Article  CAS  Google Scholar 

  40. Bearpark MJ, Robb MA, Schlegel HB (1994) Chem Phys Lett 223:269

    Article  CAS  Google Scholar 

  41. Szydlowska I, Kubicki J, Herbich J (2005) Photochem Photobiol Sci 4:106

    Article  CAS  Google Scholar 

  42. Churakov AV, Karlov SS. Private communication to the Cambridge structural database, deposition number CCDC 801515

Download references

Acknowledgments

The D.G.I.(MEC)/FEDER (CTQ2013-48635-C2-2-P and CTQ2011-24800) projects are acknowledged for financial support. E. Manso thanks the MINECO for a FPU grant. We thank the Centro de Supercomputación de Galicia (CESGA) for computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. López-de-Luzuriaga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2015_1659_MOESM1_ESM.docx

Table S1 displays the experimental and calculated (TDDFT and CASSCF) main distances for DMAP in the ground (S0) and lowest singlet excited states HE and LE both in the gas phase or introducing the solvents toluene and acetonitrile using the PCM model. The xyz coordinates of the fully optimized computed structures for the critical points for DMAP in the gas phase, toluene, and acetonitrile. TD-DFT electronic excitations in toluene and acetonitrile using LR-PCM and SS-PCM approaches (DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-de-Luzuriaga, J.M., Manso, E., Monge, M. et al. Dual fluorescence of 4-(dimethylamino)-pyridine: a comparative linear response TDDFT versus state-specific CASSCF study including solvent with the PCM model. Theor Chem Acc 134, 55 (2015). https://doi.org/10.1007/s00214-015-1659-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1659-x

Keywords

Navigation