Montmorillonite interlayer surface chemistry: effect of magnesium ion substitution on cation adsorption

  • Lasse P. Lavikainen
  • Jukka T. Tanskanen
  • Timothy Schatz
  • Seppo Kasa
  • Tapani A. Pakkanen
Regular Article


Montmorillonite is a clay mineral and the main component in bentonite clay, which is utilized in various applications including its planned use as a buffer material for long-term nuclear waste disposal. In the present paper, a quantum chemical study is presented providing an insight into montmorillonite structure and its surface chemistry, which plays a key role in understanding montmorillonite behavior at the molecular level. A model is first designed by calculating the positions of Mg-substitutions in the octahedral sheet of the layer structure. This model is then used to study (1) charge distribution in the system and (2) the energetics of Na+/Ca2+ cation adsorption on the interlayer surfaces. The results show and verify that the Mg-substitutions are positive charge deficits and the only significant charge defects in the structure. Therefore, the energetics of cation adsorption is found to correlate linearly with the inverse distances between cations and Mg-substitutions in a dry, fully periodic montmorillonite lattice.


Montmorillonite Smectite Phyllosilicate Clay mineral Bentonite 



Electrostatic potential



Financial support provided by the Finnish Funding Agency for Technology and Innovation TEKES and the European Union/European Regional Development Fund (ERDF) for the “Sliding Surfaces” project and Posiva Oy are gratefully acknowledged. The computations were made possible by use of the Finnish Grid Infrastructure resources.

Supplementary material

214_2015_1654_MOESM1_ESM.pdf (207 kb)
Supplementary material 1 (PDF 207 kb)


  1. 1.
    Guggenheim S, Martin RT (1995) Clays Clay Miner 43:255–256CrossRefGoogle Scholar
  2. 2.
    Galán E (2006) In: Bergaya F, Theng BKG, Lagaly G (eds) Developments in clay science, vol 1, 1st edn. Elsevier Ltd, Oxford, pp 1153–1154Google Scholar
  3. 3.
    Přikryl R (2006) In: Al-Rawas AA, Goosen MFA (eds) Expansive soils: recent advances in characterization and treatment. Taylor & Francis Group, London, pp 40–49Google Scholar
  4. 4.
    Pusch R (1992) Clay Miner 27:353–361CrossRefGoogle Scholar
  5. 5.
    Guggenheim S, Adams JM, Bain DC, Bergaya F, Brigatti MF, Drits VA, Formoso MLL, Galán E, Kogure T, Stanjek H (2006) Clays Clay Miner 54:761–772CrossRefGoogle Scholar
  6. 6.
    Brigatti MF, Galán E, Theng BKG (2006) In: Bergaya F, Theng BKG, Lagaly G (eds) Developments in clay science, 1st edn. Elsevier, Oxford, vol 1, pp 19–24, 41–43Google Scholar
  7. 7.
    Schoonheydt RA, Johnston CT (2006) In: Bergaya F, Theng BKG, Lagaly G (eds) Developments in clay science, vol 1, 1st edn. Elsevier, Oxford, pp 87–89Google Scholar
  8. 8.
    Lagaly G (2006) In: Bergaya F, Theng BKG, Lagaly G (eds) Developments in clay science, 1st edn. Elsevier, Oxford, vol 1, pp 141–152, 247–257Google Scholar
  9. 9.
    Pusch R (2006) In: Bergaya F, Theng BKG, Lagaly G (eds) Developments in clay science, vol 1, 1st edn. Elsevier, Oxford, pp 247–257Google Scholar
  10. 10.
    Laird DA (2006) Appl Clay Sci 34:74–87CrossRefGoogle Scholar
  11. 11.
    Weir AH (1965) Clay Miner 6:17–22CrossRefGoogle Scholar
  12. 12.
    Onodera Y, Iwasaki T, Ebina T, Hayashi H, Torii K, Chatterjee A, Mimura H (1998) J Contam Hydrol 35:131–140CrossRefGoogle Scholar
  13. 13.
    Bergaya F, Lagaly G, Vayer M (2006) In: Bergaya F, Theng BKG, Lagaly G (eds) Developments in clay science, vol 1, 1st edn. Elsevier, Oxford, pp 979–987Google Scholar
  14. 14.
    Rotenberg B, Morel J, Marry V, Turq P (2009) Geochim Cosmochim Acta 73:4034–4044CrossRefGoogle Scholar
  15. 15.
    Skipper NT, Soper AK, Smalley MV (1994) J Phys Chem 98:942–945CrossRefGoogle Scholar
  16. 16.
    Skipper NT, Smalley MV, Williams GD (1995) J Phys Chem 99:14201–14204CrossRefGoogle Scholar
  17. 17.
    Slade PG, Stone PA, Radoslovich EW (1985) Clays Clay Miner 33:51–61CrossRefGoogle Scholar
  18. 18.
    Boek ES, Coveney PV, Skipper NT (1995) J Am Chem Soc 117:12608–12617CrossRefGoogle Scholar
  19. 19.
    Chang FRC, Skipper NT, Sposito G (1995) Langmuir 11:2734–2741Google Scholar
  20. 20.
    Chang FRC, Skipper NT, Sposito G (1997) Langmuir 13:2074–2082CrossRefGoogle Scholar
  21. 21.
    Chang FRC, Skipper NT, Sposito G (1998) Langmuir 14:1201–1207CrossRefGoogle Scholar
  22. 22.
    Greathouse J, Sposito G (1998) J Phys Chem B 102:2406–2414CrossRefGoogle Scholar
  23. 23.
    Sposito G, Skipper NT, Sutton R, Park S, Soper AK, Greathouse JA (1999) Proc Natl Acad Sci 96:3358–3364CrossRefGoogle Scholar
  24. 24.
    Mignon P, Ugliengo P, Sodupe M, Hernandez ER (2010) Phys Chem Chem Phys 12:688–697CrossRefGoogle Scholar
  25. 25.
    Suter JL, Boek ES, Sprik M (2008) J Phys Chem C 112:18832–18839CrossRefGoogle Scholar
  26. 26.
    Berghout A, Tunega D, Zaoui A (2010) Clays Clay Miner 58:174–187CrossRefGoogle Scholar
  27. 27.
    Bleam WF (1990) Clays Clay Miner 38:527–536CrossRefGoogle Scholar
  28. 28.
    Bleam WF, Hoffmann R (1988) Inorg Chem 27:3180–3186CrossRefGoogle Scholar
  29. 29.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  30. 30.
    Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396CrossRefGoogle Scholar
  31. 31.
    Blöchl PE (1994) Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  32. 32.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  33. 33.
    Kresse G, Hafner J (1993) Phys Rev B 47:558–561CrossRefGoogle Scholar
  34. 34.
    Kresse G, Hafner J (1994) Phys Rev B 49:14251–14269CrossRefGoogle Scholar
  35. 35.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  36. 36.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  37. 37.
    Voora VK, Al-Saidi W, Jordan KD (2011) J Phys Chem A 115:9695–9703CrossRefGoogle Scholar
  38. 38.
    Bader R (1990) In: Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  39. 39.
    Fonseca Guerra C, Handgraaf J, Baerends EJ, Bickelhaupt FM (2004) J Comput Chem 25:189–210CrossRefGoogle Scholar
  40. 40.
    Arnaldsson A, Tang W, Chill S, Henkelman G, Sanville E, Voss J, McNellis E, Dyer M, Lebegue S, Janos A, Aubert E. Code: Bader charge analysis, v. 0.28a, 2012Google Scholar
  41. 41.
    Tang W, Sanville E, Henkelman G (2009) J Phys Condens Matter. doi: 10.1088/0953-8984/21/8/084204 Google Scholar
  42. 42.
    Viani A, Gualtieri AF, Artioli G (2002) Am Miner 87:966–975Google Scholar
  43. 43.
    Tsipursky SI, Drits VA (1984) Clay Miner 19:177–193CrossRefGoogle Scholar
  44. 44.
    Karnland O, Olsson S, Nilsson U (2006) SKB-report: mineralogy and sealing properties of various bentonites and smectite-rich clay materials, TR-06-30Google Scholar
  45. 45.
    Momma K, Izumi F (2011) J Appl Crystallogr 44:1272–1276CrossRefGoogle Scholar
  46. 46.
    Gorb L, Gu J, Leszczynska D, Leszczynski J (2000) Phys Chem Chem Phys 2:5007–5012CrossRefGoogle Scholar
  47. 47.
    Cygan RT, Liang J-, Kalinichev AG (2004) J Phys Chem B 108:1255–1266CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lasse P. Lavikainen
    • 1
  • Jukka T. Tanskanen
    • 1
  • Timothy Schatz
    • 2
  • Seppo Kasa
    • 3
  • Tapani A. Pakkanen
    • 1
  1. 1.Department of ChemistryUniversity of Eastern FinlandJoensuuFinland
  2. 2.B+Tech OyHelsinkiFinland
  3. 3.Posiva OyEurajokiFinland

Personalised recommendations