Abstract
Bone tissue is characterized by nanopores inside the collagen-apatite matrix where fluid can exist and flow. The description of the fluid flow within the bone has however mostly relied on a macroscopic continuum mechanical treatment of the system, and, for this reason, the role of these nanopores has been largely overlooked. However, neglecting the nanoscopic behaviour of fluid within the bone volume could result in large errors in the overall description of the dynamics of fluid. In this work, we have investigated the nanoscopic origin of fluid motion by conducting atomistic molecular dynamics simulations of water confined between two parallel surfaces of hydroxyapatite (HAP), which is the main mineral phase of mammalian bone. The polarizable core–shell interatomic potential model used in this work to simulate the HAP–water system has been extensively assessed with respect to ab initio calculations and experimental data. The structural (pair distribution functions), dynamical (self-diffusion coefficients) and transport (shear viscosity coefficients) properties of confined water have been computed as a function of the size of the nanopore and the temperature of the system. Analysis of the results shows that the dynamical and transport properties of water are significantly affected by the confinement, which is explained in terms of the layering of water on the surface of HAP as a consequence of the molecular interactions between the water molecules and the calcium and phosphate ions at the surface. Using molecular dynamics simulations, we have also computed the slip length of water on the surface of HAP, the value of which has never been reported before.
Similar content being viewed by others
References
Narasaraju TSB, Phebe DE (1996) J Mater Sci 31(1):1
Fratzl P, Gupta HS, Paschalis EP, Roschger P (2004) J Mater Chem 14(14):2115
Kenny SM, Buggy M (2003) J Mater Sci Mater Med 14(11):923
Oddou C, Lemaire T, Pierre J, David B (2011) In: Vafai K (ed) Porous media: applications in biological systems and biotechnology. CRC Press, Boca Raton, pp 75–119
Robinson RA, Elliott SR (1957) J Bone Joint Surg 39(1):167
Timmins PA, Wall JC (1977) Calcif Tissue Res 23(1):1. doi:10.1007/BF02012759
Tate MLK (2003) J Biomech 36(10):1409
Cowin SC, Gailani G, Benalla M (2009) Philos Trans R Soc A 367:3401
Rohan E, Naili S, Cimrman R, Lemaire T (2012) J Mech Phys Solids 60(5):857
Lemaire T, Capiez-Lernout E, Kaiser J, Naili S, Rohan E, Sansalone V (2011) Bull Math Biol 73:2649
Rohan E, Naili S, Cimrman R, Lemaire T (2012) Comptes Rendus Mecanique 340(10):688
Norrish K (1954) Disc Faraday Soc 18:120
Karniadakis G, Beskok A, Aluru NR (2006) Microflows and nanoflows: fundamentals and simulation, vol 29. Springer, Berlin
Stephen W, Wolfie T (1986) FEBS Lett 206(2):262. doi:10.1016/0014-5793(86)80993-0. http://www.sciencedirect.com/science/article/pii/0014579386809930
Sudarsanan K, Young RA (1969) Acta Crystallogr Sect B 25(8):1534. doi:10.1107/S0567740869004298
de Leeuw NH, Parker SC (1998) Phys Rev B 58:13901. doi:10.1103/PhysRevB.58.13901
de Leeuw NH (2004) Phys Chem Chem Phys 6:1860. doi:10.1039/B313242K
Dick BG, Overhauser AW (1958) Phys Rev 112:90. doi:10.1103/PhysRev.112.90
Errington JR, Debenedetti PG (2001) Nature 409:318
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103(19):8577. doi:10.1063/1.470117. http://scitation.aip.org/content/aip/journal/jcp/103/19/10.1063/1.470117
Todorov IT, Smithand W, Trachenko K, Dove MT (2006) J Mater Chem 16:1911. doi:10.1039/B517931A
Nosé S (1984) J Chem Phys 81(1):511. doi:10.1063/1.447334. http://scitation.aip.org/content/aip/journal/jcp/81/1/10.1063/1.447334
Wolthers M, Di Tommaso D, Du Z, de Leeuw NH (2012) Phys Chem Chem Phys 14:15145. doi:10.1039/C2CP42290E
Ruiz-Hernandez S, Grau-Crespo NR, Almora-Barrios R, Wolthers M, Ruiz-Salvador AR, Fernandez N, de Leeuw NH (2012) Chem Eur J 18:9828
de Leeuw NH, Parker SC (2001) Phys Chem Chem Phys 3:3217
Bako I, Hutter J, Palinkas G (2002) J Chem Phys 117(21):9838. doi:10.1063/1.1517039. http://scitation.aip.org/content/aip/journal/jcp/117/21/10.1063/1.1517039
Odutola JA, Dyke TR (1980) J Chem Phys 72(9):5062. doi:10.1063/1.439795. http://scitation.aip.org/content/aip/journal/jcp/72/9/10.1063/1.439795
Chandra A (2000) Phys Rev Lett 85:768. doi:10.1103/PhysRevLett.85.768. http://link.aps.org/doi/10.1103/PhysRevLett.85.768
Wright K, Cygan RT, Slater B (2001) Phys Chem Chem Phys 3:839. doi:10.1039/B006130L
Kerisit S, Parker SC, Harding JH (2003) J Phys Chem B 107(31):7676. doi:10.1021/jp034201b
Kerisit S, Parker SC (2004) J Am Chem Soc 126(32):10152. doi:10.1021/ja0487776. http://dx.doi.org/10.1021/ja0487776
Cooke DJ, Elliott JA (2007) J Chem Phys 127(10):104706. doi:10.1063/1.2756840. http://scitation.aip.org/content/aip/journal/jcp/127/10/10.1063/1.2756840
Perry T IV, Cygan RT, Mitchell R (2007) Geochimica et Cosmochimica Acta 71(24):5876. doi:10.1016/j.gca.2007.08.030. http://www.sciencedirect.com/science/article/pii/S0016703707005182
Raiteri P, Gale JD, Quigley D, Rodger PM (2010) J Phys Chem C 114(13):5997. doi:10.1021/jp910977a
Gale JD, Raiteri P, van Duin ACT (2011) Phys Chem Chem Phys 13:16666. doi:10.1039/C1CP21034C
Villegas-Jimenez A, Mucci A, Whitehead MA (2009) Langmuir 25(12):6813. doi:10.1021/la803652x
Lardge JS, Duffy DM, Gillan MJ, Watkins M (2010) J Phys Chem C 114(6):2664. doi:10.1021/jp909593p
Heberling F, Trainor TP, Lützenkirchen J, Eng P, Denecke MA, Bosbach D (2011) J Colloid Interface Sci 354(2):843. doi:10.1016/j.jcis.2010.10.047. http://www.sciencedirect.com/science/article/pii/S0021979710012336
Hiemstra T, Venema P, Van Riemsdijk WH (1996) J Colloid Interface Sci 184(2):680. doi:10.1006/jcis.1996.0666. http://www.sciencedirect.com/science/article/pii/S0021979796906669
Fenter P, Geissbühler P, Dimasi E, Srajer G, Sorensen LB, Sturchio NC (2000) Geochimica et Cosmochimica Acta 64(7):1221. doi:10.1016/S0016-7037(99)00403-2. http://www.sciencedirect.com/science/article/pii/S0016703799004032
Bruneval F, Donadio D, Parrinello M (2007) J Phys Chem B 111(42):12219. doi:10.1021/jp0728306
Freeman CL, Harding JH, Cooke DJ, Elliott JA, Lardge JS, Duffy DM (2007) J Phys Chem C 111(32):11943. doi:10.1021/jp071887p
Beveridge DL, DiCapua FM (1989) Ann Rev Biophys Biophys Chem 18:431
David F, Vokhmin V, Ionova G (2001) J Mol Liquids 90:45–62
Hofer TS, Tran HT, Schwenk CF, Rode BM (2004) J Comput Chem 90:211–217
Di Tommaso NH, de Leeuw D (2010) Crystal Growth Design 10:4292–4302
Dang LX, Smith DE (1993) J Chem Phys 99:4229
Berendsen HJC, Grigera JR, Straatsma TP (1987) J Phys Chem 91:6269
Pan H, Tao J, Wu T, Tang R (2007) Front Chem China 2(2):156. doi:10.1007/s11458-007-0032-6
Sit PHL, Marzari N (2005) J Chem Phys 122:204510
Arismendi-Arrieta D, Medina JS, Fanourgakis GS, Prosmiti R, Delgado-Barrio G (2014) Appl Radiat Isotopes 83(Part B):115. doi:10.1016/j.apradiso.2013.01.020. http://www.sciencedirect.com/science/article/pii/S0969804313000213
Medina JS, Prosmiti R, Villarreal P, Delgado-Barrio G, Winter G, Gonzalez B, Aleman JV, Collado C (2011) Chem Phys 388(1–3):9. doi:10.1016/j.chemphys.2011.07.001. http://www.sciencedirect.com/science/article/pii/S0301010411002813
Soper AK, Phillips MG (1986) Chem Phys 107(1):47. doi:10.1016/0301-0104(86)85058-3. http://www.sciencedirect.com/science/article/pii/0301010486850583
Di Tommaso D, de Leeuw NH (2008) J Phys Chem B 112(23):6965. doi:10.1021/jp801070b. http://pubs.acs.org/doi/abs/10.1021/jp801070b
Tang E, Di Tommaso D, de Leeuw NH (2009) J Chem Phys 130(23):234502. doi:10.1063/1.3143952. http://scitation.aip.org/content/aip/journal/jcp/130/23/10.1063/1.3143952
Einstein A (1956) Investigations on the theory of the Brownian movement. Dover, New York
Dünweg B, Kremer K (1993) J Chem Phys 99(9):6983. doi:10.1063/1.465445. http://scitation.aip.org/content/aip/journal/jcp/99/9/10.1063/1.465445
Yeh IC, Hummer G (2004) J Phys Chem B 108(40):15873. doi:10.1021/jp0477147. http://pubs.acs.org/doi/abs/10.1021/jp0477147
Todd BD, Evans DJ, Daivis PJ (1995) Phys Rev E 52:1627. doi:10.1103/PhysRevE.52.1627. http://link.aps.org/doi/10.1103/PhysRevE.52.1627
Botan A, Rotenberg B, Marry V, Turq P, Noetinger B (2011) J Phys Chem C 115(32):16109. doi:10.1021/jp204772c. http://pubs.acs.org/doi/abs/10.1021/jp204772c
Kestin J, Sokolov M, Wakeham WA (1978) J Phys Chem Ref Data 7(3):941. doi:10.1063/1.555581. http://scitation.aip.org/content/aip/journal/jpcrd/7/3/10.1063/1.555581
Bird RB, Warren ES, Edwin NL (2007) Transport phenomena, revised, 2nd edn. Wiley, New York
Markesteijn AP, Hartkamp R, Luding S, Westerweel J (2012) J Chem Phys 136(13):134104. doi:10.1063/1.3697977. http://scitation.aip.org/content/aip/journal/jcp/136/13/10.1063/1.3697977
Fanourgakis GS, Medina JS, R P (2012) J Phys Chem A 116:2564–2570
Guevara-Carrion G, Vrabec J, Hasse H (2011) J Chem Phys 134(7):074508. doi:10.1063/1.3515262. http://scitation.aip.org/content/aip/journal/jcp/134/7/10.1063/1.3515262
Gonzalez MA, Abascal JLF (2010) J Chem Phys 132(9):096101. doi:10.1063/1.3330544. http://scitation.aip.org/content/aip/journal/jcp/132/9/10.1063/1.3330544
Fanourgakis GS, Medina JS, Prosmiti R (2012) J Phys Chem A 116(10):2564. doi:10.1021/jp211952y. http://pubs.acs.org/doi/abs/10.1021/jp211952y
Wensink EJW, Hoffmann AC, van Maaren PJ, van der Spoel D (2003) J Chem Phys 119(14):7308. doi:10.1063/1.1607918. http://scitation.aip.org/content/aip/journal/jcp/119/14/10.1063/1.1607918
Bertolini D, Tani A (1995) Phys Rev E 52:1699. doi:10.1103/PhysRevE.52.1699. http://link.aps.org/doi/10.1103/PhysRevE.52.1699
Wu Y, Tepper HL, Voth GA (2006) J Chem Phys 124(2):024503. doi:10.1063/1.2136877. http://scitation.aip.org/content/aip/journal/jcp/124/2/10.1063/1.2136877
Slusher JT (2000) Mol Phys 98(5):287. doi:10.1080/00268970009483292
Jorgensen WL (1986) J Phys Chem 90(7):1276. doi:10.1021/j100398a015. http://pubs.acs.org/doi/abs/10.1021/j100398a015
Glattli A, Daura X, van Gunsteren WF (2002) J Chem Phys 116(22):9811. doi:10.1063/1.1476316. http://scitation.aip.org/content/aip/journal/jcp/116/22/10.1063/1.1476316
Hess B (2002) J Chem Phys 116(1):209. doi:10.1063/1.1421362. http://scitation.aip.org/content/aip/journal/jcp/116/1/10.1063/1.1421362
Balasubramanian S, Mundy CJ, Klein ML (1996) J Chem Phys 105(24):11190. doi:10.1063/1.472918. http://scitation.aip.org/content/aip/journal/jcp/105/24/10.1063/1.472918
Guo GJ, Zhang YG (2001) Mol Phys 99(4):283. doi:10.1080/00268970010011762
Smith PE, van Gunsteren WF (1993) Chem Phys Lett 215(4):315. doi:10.1016/0009-2614(93)85720-9. http://www.sciencedirect.com/science/article/pii/0009261493857209
Harris KR, Woolf LA (2004) J Chem Eng Data 49(4):1064. doi:10.1021/je049918m. http://pubs.acs.org/doi/abs/10.1021/je049918m
Ellis JS, Thompson M (2004) Phys Chem Chem Phys 6:4928
Bocquet L, Charlaix E (2010) Chem Soc Rev 39:1073
Sendner C, Horinek D, Bocquet L, Netz RR (2009) Langmuir 25(18):10768
Joschek S, Nies B, Krotz R, Gopferich A (2000) Biomaterials 21(16):1645
Acknowledgments
N.H. de Leeuw is grateful to ‘Université Paris-Est Créteil’ (UPEC) for financial support received during the course of this research. T.T. Pham is grateful to the ‘Institut des sciences de l’ingénierie et des systèmes’ (INSIS) of the ‘Centre national de la recherche scientifique’ (CNRS) for financial support received during the course of this research. D. Di Tommaso would like to thank the Royal Society, UK, for the award of a Royal Society Industry Fellowship.
Conflict of interest
The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pham, T.T., Lemaire, T., Capiez-Lernout, E. et al. Properties of water confined in hydroxyapatite nanopores as derived from molecular dynamics simulations. Theor Chem Acc 134, 59 (2015). https://doi.org/10.1007/s00214-015-1653-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00214-015-1653-3