Skip to main content

Properties of water confined in hydroxyapatite nanopores as derived from molecular dynamics simulations


Bone tissue is characterized by nanopores inside the collagen-apatite matrix where fluid can exist and flow. The description of the fluid flow within the bone has however mostly relied on a macroscopic continuum mechanical treatment of the system, and, for this reason, the role of these nanopores has been largely overlooked. However, neglecting the nanoscopic behaviour of fluid within the bone volume could result in large errors in the overall description of the dynamics of fluid. In this work, we have investigated the nanoscopic origin of fluid motion by conducting atomistic molecular dynamics simulations of water confined between two parallel surfaces of hydroxyapatite (HAP), which is the main mineral phase of mammalian bone. The polarizable core–shell interatomic potential model used in this work to simulate the HAP–water system has been extensively assessed with respect to ab initio calculations and experimental data. The structural (pair distribution functions), dynamical (self-diffusion coefficients) and transport (shear viscosity coefficients) properties of confined water have been computed as a function of the size of the nanopore and the temperature of the system. Analysis of the results shows that the dynamical and transport properties of water are significantly affected by the confinement, which is explained in terms of the layering of water on the surface of HAP as a consequence of the molecular interactions between the water molecules and the calcium and phosphate ions at the surface. Using molecular dynamics simulations, we have also computed the slip length of water on the surface of HAP, the value of which has never been reported before.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. Narasaraju TSB, Phebe DE (1996) J Mater Sci 31(1):1

    Article  CAS  Google Scholar 

  2. Fratzl P, Gupta HS, Paschalis EP, Roschger P (2004) J Mater Chem 14(14):2115

    Article  CAS  Google Scholar 

  3. Kenny SM, Buggy M (2003) J Mater Sci Mater Med 14(11):923

    Article  CAS  Google Scholar 

  4. Oddou C, Lemaire T, Pierre J, David B (2011) In: Vafai K (ed) Porous media: applications in biological systems and biotechnology. CRC Press, Boca Raton, pp 75–119

  5. Robinson RA, Elliott SR (1957) J Bone Joint Surg 39(1):167

    Google Scholar 

  6. Timmins PA, Wall JC (1977) Calcif Tissue Res 23(1):1. doi:10.1007/BF02012759

    Article  CAS  Google Scholar 

  7. Tate MLK (2003) J Biomech 36(10):1409

    Article  Google Scholar 

  8. Cowin SC, Gailani G, Benalla M (2009) Philos Trans R Soc A 367:3401

    Article  Google Scholar 

  9. Rohan E, Naili S, Cimrman R, Lemaire T (2012) J Mech Phys Solids 60(5):857

    Article  Google Scholar 

  10. Lemaire T, Capiez-Lernout E, Kaiser J, Naili S, Rohan E, Sansalone V (2011) Bull Math Biol 73:2649

    Article  CAS  Google Scholar 

  11. Rohan E, Naili S, Cimrman R, Lemaire T (2012) Comptes Rendus Mecanique 340(10):688

    Article  Google Scholar 

  12. Norrish K (1954) Disc Faraday Soc 18:120

    Article  CAS  Google Scholar 

  13. Karniadakis G, Beskok A, Aluru NR (2006) Microflows and nanoflows: fundamentals and simulation, vol 29. Springer, Berlin

    Google Scholar 

  14. Stephen W, Wolfie T (1986) FEBS Lett 206(2):262. doi:10.1016/0014-5793(86)80993-0.

  15. Sudarsanan K, Young RA (1969) Acta Crystallogr Sect B 25(8):1534. doi:10.1107/S0567740869004298

    Article  CAS  Google Scholar 

  16. de Leeuw NH, Parker SC (1998) Phys Rev B 58:13901. doi:10.1103/PhysRevB.58.13901

    Article  Google Scholar 

  17. de Leeuw NH (2004) Phys Chem Chem Phys 6:1860. doi:10.1039/B313242K

    Article  Google Scholar 

  18. Dick BG, Overhauser AW (1958) Phys Rev 112:90. doi:10.1103/PhysRev.112.90

    Article  CAS  Google Scholar 

  19. Errington JR, Debenedetti PG (2001) Nature 409:318

    Article  CAS  Google Scholar 

  20. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103(19):8577. doi:10.1063/1.470117.

  21. Todorov IT, Smithand W, Trachenko K, Dove MT (2006) J Mater Chem 16:1911. doi:10.1039/B517931A

    Article  CAS  Google Scholar 

  22. Nosé S (1984) J Chem Phys 81(1):511. doi:10.1063/1.447334.

  23. Wolthers M, Di Tommaso D, Du Z, de Leeuw NH (2012) Phys Chem Chem Phys 14:15145. doi:10.1039/C2CP42290E

    Article  CAS  Google Scholar 

  24. Ruiz-Hernandez S, Grau-Crespo NR, Almora-Barrios R, Wolthers M, Ruiz-Salvador AR, Fernandez N, de Leeuw NH (2012) Chem Eur J 18:9828

    Article  CAS  Google Scholar 

  25. de Leeuw NH, Parker SC (2001) Phys Chem Chem Phys 3:3217

    Article  Google Scholar 

  26. Bako I, Hutter J, Palinkas G (2002) J Chem Phys 117(21):9838. doi:10.1063/1.1517039.

  27. Odutola JA, Dyke TR (1980) J Chem Phys 72(9):5062. doi:10.1063/1.439795.

  28. Chandra A (2000) Phys Rev Lett 85:768. doi:10.1103/PhysRevLett.85.768.

  29. Wright K, Cygan RT, Slater B (2001) Phys Chem Chem Phys 3:839. doi:10.1039/B006130L

    Article  CAS  Google Scholar 

  30. Kerisit S, Parker SC, Harding JH (2003) J Phys Chem B 107(31):7676. doi:10.1021/jp034201b

    Article  CAS  Google Scholar 

  31. Kerisit S, Parker SC (2004) J Am Chem Soc 126(32):10152. doi:10.1021/ja0487776.

  32. Cooke DJ, Elliott JA (2007) J Chem Phys 127(10):104706. doi:10.1063/1.2756840.

  33. Perry T IV, Cygan RT, Mitchell R (2007) Geochimica et Cosmochimica Acta 71(24):5876. doi:10.1016/j.gca.2007.08.030.

  34. Raiteri P, Gale JD, Quigley D, Rodger PM (2010) J Phys Chem C 114(13):5997. doi:10.1021/jp910977a

    Article  CAS  Google Scholar 

  35. Gale JD, Raiteri P, van Duin ACT (2011) Phys Chem Chem Phys 13:16666. doi:10.1039/C1CP21034C

    Article  CAS  Google Scholar 

  36. Villegas-Jimenez A, Mucci A, Whitehead MA (2009) Langmuir 25(12):6813. doi:10.1021/la803652x

    Article  CAS  Google Scholar 

  37. Lardge JS, Duffy DM, Gillan MJ, Watkins M (2010) J Phys Chem C 114(6):2664. doi:10.1021/jp909593p

    Article  CAS  Google Scholar 

  38. Heberling F, Trainor TP, Lützenkirchen J, Eng P, Denecke MA, Bosbach D (2011) J Colloid Interface Sci 354(2):843. doi:10.1016/j.jcis.2010.10.047.

  39. Hiemstra T, Venema P, Van Riemsdijk WH (1996) J Colloid Interface Sci 184(2):680. doi:10.1006/jcis.1996.0666.

  40. Fenter P, Geissbühler P, Dimasi E, Srajer G, Sorensen LB, Sturchio NC (2000) Geochimica et Cosmochimica Acta 64(7):1221. doi:10.1016/S0016-7037(99)00403-2.

  41. Bruneval F, Donadio D, Parrinello M (2007) J Phys Chem B 111(42):12219. doi:10.1021/jp0728306

    Article  CAS  Google Scholar 

  42. Freeman CL, Harding JH, Cooke DJ, Elliott JA, Lardge JS, Duffy DM (2007) J Phys Chem C 111(32):11943. doi:10.1021/jp071887p

    Article  CAS  Google Scholar 

  43. Beveridge DL, DiCapua FM (1989) Ann Rev Biophys Biophys Chem 18:431

    Article  CAS  Google Scholar 

  44. David F, Vokhmin V, Ionova G (2001) J Mol Liquids 90:45–62

    Article  CAS  Google Scholar 

  45. Hofer TS, Tran HT, Schwenk CF, Rode BM (2004) J Comput Chem 90:211–217

    Article  Google Scholar 

  46. Di Tommaso NH, de Leeuw D (2010) Crystal Growth Design 10:4292–4302

    Article  Google Scholar 

  47. Dang LX, Smith DE (1993) J Chem Phys 99:4229

    Article  Google Scholar 

  48. Berendsen HJC, Grigera JR, Straatsma TP (1987) J Phys Chem 91:6269

    Article  CAS  Google Scholar 

  49. Pan H, Tao J, Wu T, Tang R (2007) Front Chem China 2(2):156. doi:10.1007/s11458-007-0032-6

    Article  Google Scholar 

  50. Sit PHL, Marzari N (2005) J Chem Phys 122:204510

    Article  Google Scholar 

  51. Arismendi-Arrieta D, Medina JS, Fanourgakis GS, Prosmiti R, Delgado-Barrio G (2014) Appl Radiat Isotopes 83(Part B):115. doi:10.1016/j.apradiso.2013.01.020.

  52. Medina JS, Prosmiti R, Villarreal P, Delgado-Barrio G, Winter G, Gonzalez B, Aleman JV, Collado C (2011) Chem Phys 388(1–3):9. doi:10.1016/j.chemphys.2011.07.001.

  53. Soper AK, Phillips MG (1986) Chem Phys 107(1):47. doi:10.1016/0301-0104(86)85058-3.

  54. Di Tommaso D, de Leeuw NH (2008) J Phys Chem B 112(23):6965. doi:10.1021/jp801070b.

  55. Tang E, Di Tommaso D, de Leeuw NH (2009) J Chem Phys 130(23):234502. doi:10.1063/1.3143952.

  56. Einstein A (1956) Investigations on the theory of the Brownian movement. Dover, New York

    Google Scholar 

  57. Dünweg B, Kremer K (1993) J Chem Phys 99(9):6983. doi:10.1063/1.465445.

  58. Yeh IC, Hummer G (2004) J Phys Chem B 108(40):15873. doi:10.1021/jp0477147.

  59. Todd BD, Evans DJ, Daivis PJ (1995) Phys Rev E 52:1627. doi:10.1103/PhysRevE.52.1627.

  60. Botan A, Rotenberg B, Marry V, Turq P, Noetinger B (2011) J Phys Chem C 115(32):16109. doi:10.1021/jp204772c.

  61. Kestin J, Sokolov M, Wakeham WA (1978) J Phys Chem Ref Data 7(3):941. doi:10.1063/1.555581.

  62. Bird RB, Warren ES, Edwin NL (2007) Transport phenomena, revised, 2nd edn. Wiley, New York

    Google Scholar 

  63. Markesteijn AP, Hartkamp R, Luding S, Westerweel J (2012) J Chem Phys 136(13):134104. doi:10.1063/1.3697977.

  64. Fanourgakis GS, Medina JS, R P (2012) J Phys Chem A 116:2564–2570

    Article  CAS  Google Scholar 

  65. Guevara-Carrion G, Vrabec J, Hasse H (2011) J Chem Phys 134(7):074508. doi:10.1063/1.3515262.

  66. Gonzalez MA, Abascal JLF (2010) J Chem Phys 132(9):096101. doi:10.1063/1.3330544.

  67. Fanourgakis GS, Medina JS, Prosmiti R (2012) J Phys Chem A 116(10):2564. doi:10.1021/jp211952y.

  68. Wensink EJW, Hoffmann AC, van Maaren PJ, van der Spoel D (2003) J Chem Phys 119(14):7308. doi:10.1063/1.1607918.

  69. Bertolini D, Tani A (1995) Phys Rev E 52:1699. doi:10.1103/PhysRevE.52.1699.

  70. Wu Y, Tepper HL, Voth GA (2006) J Chem Phys 124(2):024503. doi:10.1063/1.2136877.

  71. Slusher JT (2000) Mol Phys 98(5):287. doi:10.1080/00268970009483292

    Article  CAS  Google Scholar 

  72. Jorgensen WL (1986) J Phys Chem 90(7):1276. doi:10.1021/j100398a015.

  73. Glattli A, Daura X, van Gunsteren WF (2002) J Chem Phys 116(22):9811. doi:10.1063/1.1476316.

  74. Hess B (2002) J Chem Phys 116(1):209. doi:10.1063/1.1421362.

  75. Balasubramanian S, Mundy CJ, Klein ML (1996) J Chem Phys 105(24):11190. doi:10.1063/1.472918.

  76. Guo GJ, Zhang YG (2001) Mol Phys 99(4):283. doi:10.1080/00268970010011762

    Article  CAS  Google Scholar 

  77. Smith PE, van Gunsteren WF (1993) Chem Phys Lett 215(4):315. doi:10.1016/0009-2614(93)85720-9.

  78. Harris KR, Woolf LA (2004) J Chem Eng Data 49(4):1064. doi:10.1021/je049918m.

  79. Ellis JS, Thompson M (2004) Phys Chem Chem Phys 6:4928

    Article  CAS  Google Scholar 

  80. Bocquet L, Charlaix E (2010) Chem Soc Rev 39:1073

    Article  CAS  Google Scholar 

  81. Sendner C, Horinek D, Bocquet L, Netz RR (2009) Langmuir 25(18):10768

    Article  CAS  Google Scholar 

  82. Joschek S, Nies B, Krotz R, Gopferich A (2000) Biomaterials 21(16):1645

    Article  CAS  Google Scholar 

Download references


N.H. de Leeuw is grateful to ‘Université Paris-Est Créteil’ (UPEC) for financial support received during the course of this research. T.T. Pham is grateful to the ‘Institut des sciences de l’ingénierie et des systèmes’ (INSIS) of the ‘Centre national de la recherche scientifique’ (CNRS) for financial support received during the course of this research. D. Di Tommaso would like to thank the Royal Society, UK, for the award of a Royal Society Industry Fellowship.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Salah Naili.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pham, T.T., Lemaire, T., Capiez-Lernout, E. et al. Properties of water confined in hydroxyapatite nanopores as derived from molecular dynamics simulations. Theor Chem Acc 134, 59 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Water properties
  • Nanopores
  • Hydroxyapatite
  • Bone fluid flow