Skip to main content
Log in

Separating nuclear spin isomers using a pump–dump laser scheme

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The concept of nuclear spin isomers was already introduced in the early days of quantum mechanics. Despite its importance, not much work has been done to separate them experimentally by pushing the ratio away from its equilibrium value. We propose to use ultrashort laser pulses in a pump–dump-like experiment to enhance the ratio between different nuclear spin isomers. Exemplary wave packet simulations with optimized femtosecond pump and dump laser pulses are shown on a quinodimethane derivative to illustrate that the ratio between two different groups of nuclear spin isomers is enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eucken A (1912) Sitzber Preuss Akad Wiss 141

  2. Mecke R (1925) Z Physik 31:709

    Article  CAS  Google Scholar 

  3. Heisenberg W (1927) Z Physik 41:239

    Article  CAS  Google Scholar 

  4. Hund F (1927) Z Physik 42:93

    Article  CAS  Google Scholar 

  5. Bonhoeffer K, Harteck P (1929) Naturwissenschaften 17:182

    Article  CAS  Google Scholar 

  6. Farkas A (1935) Orthohydrogen, parahydrogen and heavy hydrogen. Cambridge University Press, London

    Google Scholar 

  7. Buntkowsky G, Limbach HH (2006) Dihydrogen and symmetry: the role of symmetry on the chemistry of dihydrogen transfer in the light of NMR spectroscopy. In: Hynes JT, Klinman J, Limbach HH, Schowen RL (eds) Hydrogen-transfer reactions, vol 2. Wiley-VCH, Weinheim

    Google Scholar 

  8. Quack M (1977) Mol Phys 34:477

    Article  CAS  Google Scholar 

  9. Bunker PR, Jensen P (2009) Spectroscopy and broken symmetry. Elsevier, Amsterdam

    Book  Google Scholar 

  10. Chapovsky PL, Hermans LJF (1999) Annu Rev Phys Chem 50:315

    Article  CAS  Google Scholar 

  11. Sandler YL (1954) J Phys Chem 58:58

    Article  CAS  Google Scholar 

  12. Cunningham CM, Johnston HL (1958) J Am Chem Soc 80:2382

    Article  CAS  Google Scholar 

  13. Panfilov V, Strunin V, Chapovsky PL (1983) Sov Phys J Exp Theor Phys 58:510

    Google Scholar 

  14. Chapovsky PL, Krasnoperov LN, Panfilov VN, Strunin VP (1985) Chem Phys 97:449

    Article  Google Scholar 

  15. Bakarev AE, Chapovsky PL (1986) J Exp Theor Phys Lett 44:4

    Google Scholar 

  16. Chapovsky PL (1990) Sov Phys J Exp Theor Phys 70:895

    Google Scholar 

  17. Chapovsky P, Cosléou J, Herlemont F, Khelkhal M, Legrand J (2000) Chem Phys Lett 322:424

    Article  CAS  Google Scholar 

  18. Peters G, Schramm B (1999) Chem Phys Lett 302:181

    Article  CAS  Google Scholar 

  19. Sun ZD, Takagi K, Matsushima F (2005) Science 310(5756):1938

    Article  CAS  Google Scholar 

  20. Tikhonov VI, Volkov AA (2002) Science 296(5577):2363

    Article  CAS  Google Scholar 

  21. Kravchuk T, Reznikov M, Tichonov P, Avidor N, Meir Y, Bekkerman A, Alexandrowicz G (2011) Science 331(6015):319

    Article  CAS  Google Scholar 

  22. Horke DA, Chang YP, Długołȩcki K, Küpper J (2014) Chem Int Ed 53:11965

    Article  CAS  Google Scholar 

  23. Gel’mukhanov FK, Shalagin AM (1979) J Exp Theor Phys Lett 29:773

    Google Scholar 

  24. Al-Jabour S (2011) Molecular symmetry, quantum chemistry and dynamics: simulation of laser driven molecular torsion in the presence of a conical intersection (Dissertation, Freie Universität Berlin)

  25. Fujimura Y, González L, Hoki K, Kröner D, Manz J, Ohtsuki Y (1999) Chem Phys Lett 310:578

    Article  CAS  Google Scholar 

  26. Brackhagen O, Busse H, Giraud-Girard J, Manz J, Oppel M (2000) J Chem Phys 112:8819

    Article  CAS  Google Scholar 

  27. Evers F, Giraud-Girard J, Grimme S, Manz J, Monte C, Oppel M, Rettig W, Saalfrank P, Zimmermann P (2001) J Phys Chem A 105:2911

    Article  CAS  Google Scholar 

  28. Hoki K, Kröner D, Manz J (2001) Chem Phys 267:59

    Article  CAS  Google Scholar 

  29. Manz J, Proppe B, Schmidt B (2002) Phys Chem Chem Phys 4:1876

    Article  CAS  Google Scholar 

  30. Fujimura Y, González L, Kröner D, Manz J, Mehdaoui I, Schmidt B (2004) Chem Phys Lett 386:248

    Article  CAS  Google Scholar 

  31. Kröner D, Klaumützer B (2007) Phys Chem Chem Phys 9:5009

    Article  Google Scholar 

  32. Obaid R, Leibscher M (2015) J Chem Phys 142(6):064315

    Article  CAS  Google Scholar 

  33. Obaid R, Kinzel D, Oppel M, González L (2014) J Chem Phys 141:164323

    Article  Google Scholar 

  34. Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157

    Article  CAS  Google Scholar 

  35. Belz S, Deeb O, González L, Grohman T, Kinzel D, Leibscher M, Manz J, Obaid R, Oppel M, Xavier GD, Zilberg S (2013) Z Phys Chem 227:1021

    Article  CAS  Google Scholar 

  36. Lehtovaara L, Toivanen J, Eloranta J (2007) J Comp Phys 221:148

    Article  Google Scholar 

  37. Feit MD, Fleck JA Jr (1983) J Chem Phys 78:301

    Article  CAS  Google Scholar 

  38. Leforestier C, Bisseling RH, Cerjan C, Feit MD, Friesner R, Guldberg A, Hammerich A, Jolicard G, Karrlein W, Meyer HD, Lipkin N, Roncero O, Kosloff R (1991) J Comput Phys 94:59

    Article  Google Scholar 

  39. Levy DH (1981) Science 214:263

    Article  CAS  Google Scholar 

  40. Rulliere C (2004) Femtosecond laser pulses: principles and experiments. Advanced texts in physics. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

We specially would like to thank Jörn Manz for suggesting these calculations but also Monika Leibscher, Thomas Grohmann and Omar Deeb for fruitful discussions. Financial support by the Deutsche Forschungsgemeinschaft via projects GO 1059/7-3 and MA 515/25-3 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia González.

Additional information

Published as part of the special collection of articles derived from the 9th Congress on Electronic Structure: Principles and Applications (ESPA 2014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obaid, R., Kinzel, D., Oppel, M. et al. Separating nuclear spin isomers using a pump–dump laser scheme. Theor Chem Acc 134, 46 (2015). https://doi.org/10.1007/s00214-015-1644-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1644-4

Keywords

Navigation