Structural relaxation effects on the lowest \(4f{-}5d\) transition of \(\hbox {Ce}^{3+}\) in garnets

Regular Article
Part of the following topical collections:
  1. 9th Congress on Electronic Structure: Principles and Applications (ESPA 2014)

Abstract

The role of structural relaxations on the energy of the lowest \(4f{-}5d\) transition of \(\hbox {Ce}^{3+}\) in garnets is studied by means of ab initio calculations. This study completes previous studies on the roles of the interactions of the Cerium impurity with its first neighbors and with the rest of the solid hosts, before the relaxations take place. Periodic boundary conditions density functional theory calculations (DFT) and second-order perturbation theory spin–orbit coupling embedded-cluster wave function theory calculations (WFT) have been performed in the garnets \(\hbox {Y}_{3}\hbox {Al}_{5}\hbox {O}_{12}\), \(\hbox {Lu}_{3}\hbox {Al}_{5}\hbox {O}_{12}\), \(\hbox {Y}_{3}\hbox {Ga}_{5}\hbox {O}_{12}\), \(\hbox {Lu}_{3}\hbox {Ga}_{5}\hbox {O}_{12}\), and \(\hbox {Ca}_{3}\hbox {Sc}_{2}\hbox {Si}_{3}\hbox {O}_{12}\) doped with \(\hbox {Ce}^{3+}\). The local relaxation effects on the \(4f{-}5d\) transition are similar in the WFT and DFT calculations. They produce a blue shift in Al and Ga garnets in which Ce substitutes for smaller Y and Lu cations, which is found to be basically due to the local expansions around the impurity, with only minor contributions from angular relaxations. Atomic relaxations of more distant neighbors enhance the blue shift. Although the embedding effects of the undistorted garnets are known to make the differences between the \(4f{-}5d\) transition in Al and Ga garnets, we find that the structural relaxations are responsible for the small differences between the \(4f{-}5d\) transition in \(\hbox {Y}_{3}\hbox {Al}_{5}\hbox {O}_{12}\):\(\hbox {Ce}^{3+}\) and \(\hbox {Lu}_{3}\hbox {Al}_{5}\hbox {O}_{12}\):\(\hbox {Ce}^{3+}\), and in \(\hbox {Y}_{3}\hbox {Ga}_{5}\hbox {O}_{12}\):\(\hbox {Ce}^{3+}\) and \(\hbox {Lu}_{3}\hbox {Ga}_{5}\hbox{O}_{12}\):\(\hbox {Ce}^{3+}\).

Keywords

Ce YAG Garnets \(4f{-}5d\) transitions Ab initio Defect Relaxation 

References

  1. 1.
    Nakamura S, Fasol G (1997) The blue laser diode: GaN based light emitters and lasers. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Jüstel T, Nikol H, Ronda C (1998) Angew Chem Int Ed 37:3084CrossRefGoogle Scholar
  3. 3.
    Blasse G, Bril A (1967) J Chem Phys 47:5139CrossRefGoogle Scholar
  4. 4.
    Setlur AA, Heward WJ, Gao Y, Srivastava AM, Chandran RG, Shankar MV (2006) Chem Mater 18:3314CrossRefGoogle Scholar
  5. 5.
    Shimomura Y, Honma T, Shigeiwa M, Akai T, Okamoto K, Kijima N (2007) J Electrochem Soc 154:J35CrossRefGoogle Scholar
  6. 6.
    Weber MJ (2002) J Lumin 100:35CrossRefGoogle Scholar
  7. 7.
    Holloway WW, Kestigian M (1969) J Opt Soc Am 59:60CrossRefGoogle Scholar
  8. 8.
    Pan YX, Wang W, Liu GK, Skanthakumar S, Rosenberg RA, Guo XZ, Li KK (2009) J Alloys Compd 488:638CrossRefGoogle Scholar
  9. 9.
    Muñoz-García AB, Seijo L (2010) Phys Rev B 82:184118CrossRefGoogle Scholar
  10. 10.
    Muñoz-García AB, Pascual JL, Barandiarán Z, Seijo L (2010) Phys Rev B 82:064114CrossRefGoogle Scholar
  11. 11.
    Seijo L, Barandiarán Z (2013a) Opt Mater 35:1932CrossRefGoogle Scholar
  12. 12.
    Seijo L, Barandiarán Z (2013b) Phys Chem Chem Phys 15:19221CrossRefGoogle Scholar
  13. 13.
    Karlström G, Lindh R, Malmqvist PA, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P et al (2003) Comput Mater Sci 28:222CrossRefGoogle Scholar
  14. 14.
    Douglas M, Kroll NM (1974) Ann Phys (NY) 82:89CrossRefGoogle Scholar
  15. 15.
    Hess BA (1986) Phys Rev A 33:3742CrossRefGoogle Scholar
  16. 16.
    Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157CrossRefGoogle Scholar
  17. 17.
    Siegbahn PEM, Heiberg A, Roos BO, Levy B (1980) Phys Scr 21:323CrossRefGoogle Scholar
  18. 18.
    Siegbahn PEM, Heiberg A, Almlöf J, Roos BO (1981) J Chem Phys 74:2384CrossRefGoogle Scholar
  19. 19.
    Andersson K, Malmqvist P-A, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94:5483CrossRefGoogle Scholar
  20. 20.
    Andersson K, Malmqvist P-A, Roos BO (1992) J Chem Phys 96:1218CrossRefGoogle Scholar
  21. 21.
    Zaitsevskii A, Malrieu J-P (1995) Chem Phys Lett 233:597CrossRefGoogle Scholar
  22. 22.
    Finley J, Malmqvist P-A, Roos BO, Serrano-Andrés L (1998) Chem Phys Lett 288:299CrossRefGoogle Scholar
  23. 23.
    Hess BA, Marian CM, Wahlgren U, Gropen O (1996) Chem Phys Lett 251:365CrossRefGoogle Scholar
  24. 24.
    Malmqvist PA, Roos BO, Schimmelpfennig B (2002) Chem Phys Lett 357:230CrossRefGoogle Scholar
  25. 25.
    Roos BO, Lindh R, Malmqvist PA, Veryazov V, Widmark PO (2008) J Chem Phys 112:11431CrossRefGoogle Scholar
  26. 26.
    Roos BO, Lindh R, Malmqvist PA, Veryazov V, Widmark PO (2005) J Phys Chem A 108:2851CrossRefGoogle Scholar
  27. 27.
    Barandiarán Z, Seijo L (1988) J Chem Phys 89:5739CrossRefGoogle Scholar
  28. 28.
    Gracia J, Seijo L, Barandiarán Z, Curulla D, Niemansverdriet H, van Gennip W (2008) J Lumin 128:1248CrossRefGoogle Scholar
  29. 29.
    Seijo L, Barandiarán Z (1991) J Chem Phys 94:8158CrossRefGoogle Scholar
  30. 30.
    Gellé A, Lepetit M-B (2008) J Chem Phys 128:244716CrossRefGoogle Scholar
  31. 31.
    Ewald PP (1921) Ann Phys 369:253CrossRefGoogle Scholar
  32. 32.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  33. 33.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  34. 34.
    Kresse G, Hafner J (1993) Phys Rev B 47:558CrossRefGoogle Scholar
  35. 35.
    Kresse G, Hafner J (1994) Phys Rev B 49:14251CrossRefGoogle Scholar
  36. 36.
    Kresse G, Furthmüller J (1996a) Comput Mater Sci 6:15CrossRefGoogle Scholar
  37. 37.
    Kresse G, Furthmüller J (1996b) Phys Rev B 54:11169CrossRefGoogle Scholar
  38. 38.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671CrossRefGoogle Scholar
  39. 39.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505CrossRefGoogle Scholar
  40. 40.
    Ning L, Yang F, Duan C, Zhang Y, Liang J, Cui Z (2012) J Phys Condens Matter 24:05502CrossRefGoogle Scholar
  41. 41.
    Muñoz-García AB, Seijo L (2011) J Phys Chem A 115:815CrossRefGoogle Scholar
  42. 42.
    Shannon RD (1976) Acta Crystallogr A 32:751CrossRefGoogle Scholar
  43. 43.
    Ghigna P, Pin S, Ronda C, Speghini A, Piccinelli F, Bettinelli M (2011) Opt Mater 34:19CrossRefGoogle Scholar
  44. 44.
    Seijo L, Barandiarán Z (2001) J Chem Phys 115:5554CrossRefGoogle Scholar
  45. 45.
    Barandiarán Z, Seijo L (2003) J Chem Phys 119:3785CrossRefGoogle Scholar
  46. 46.
    Barandiarán Z, Seijo L (2015) In: Dolg N (ed) Computational methods in lanthanide and actinide chemistry. Wiley, New YorkGoogle Scholar
  47. 47.
    Euler F, Bruce JA (1965) Acta Crystallogr 19:971CrossRefGoogle Scholar
  48. 48.
    Muñoz-García AB, Anglada E, Seijo L (2009) Int J Quantum Chem 109:1991CrossRefGoogle Scholar
  49. 49.
    Nakatsuka A, Yoshiasa A, Takeno S (1995) Acta Crystallogr B 51:737CrossRefGoogle Scholar
  50. 50.
    Quartieri S, Oberti R, Boiocchi M, Dalconi MC, Boscherini F, Safonova O, Woodland AB (2006) Am Mineral 91:1240CrossRefGoogle Scholar
  51. 51.
    Ogieglo JM, Zych A, Ivanovskikh KV, Jüstel T, Ronda CR, Meijerink A (2012) J Phys Chem A 116:8464CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Quan Manh Phung
    • 1
  • Zoila Barandiarán
    • 2
    • 3
  • Luis Seijo
    • 2
    • 3
  1. 1.Department of ChemistryKU LeuvenLeuvenBelgium
  2. 2.Departamento de QuímicaUniversidad Autónoma de MadridMadridSpain
  3. 3.Instituto Universitario de Ciencia de Materiales Nicolás CabreraUniversidad Autónoma de MadridMadridSpain

Personalised recommendations