Skip to main content

Spin delocalization in hydrogen chains described with the spin-partitioned total position-spread tensor


The formalism of the spin-partitioned total position spread (SP-TPS) tensor is applied to model systems treated at ab initio level. They are hydrogen linear chains having different geometries and showing qualitatively different behaviors. Indeed, the SP-TPS behavior depends in a crucial way on the entanglement properties of the chain wave function. It is shown that the SP-TPS tensor gives a measure of the spin delocalization in the chain. This is very low in the case of isolated fixed-length dimers and maximal for chains of equally spaced atoms. The present formalism could be used to describe, for instance, the spin fluctuation associated with spintronic devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Wunderlich T, Akgenc B, Eckern U, Schuster C, Schwingenschlögl U (2013) Modified Li chains as atomic switches. Sci Rep 3:2605

    Article  Google Scholar 

  2. 2.

    Scheer E, Agraït N, Cuevas JC, Yeyati AL, Ludoph B, Martín-Rodero A, Bollinger GR, van Ruitenbeek JM, Urbina C (1998) The signature of chemical valence in the electrical conduction through a single-atom contact. Nature 394:154–157

    Article  CAS  Google Scholar 

  3. 3.

    Sinitskiy AV, Greenman L, Mazziotti D (2010) Strong correlation in hydrogen chains and lattices using the variational two-electron reduced density matrix method. J Chem Phys 133:014104

    Article  Google Scholar 

  4. 4.

    Kohanoff J, Hansen JP (1995) Ab initio molecular dynamics of metallic hydrogen at high densities. Phys Rev Lett 74:626–629

    Article  CAS  Google Scholar 

  5. 5.

    Kohn W (1964) Theory of the insulating state. Phys Rev 133:A171–A181

    Article  Google Scholar 

  6. 6.

    Resta R, Sorella S (1999) Electron localization in the insulating state. Phys Rev Lett 82:370–373

    Article  CAS  Google Scholar 

  7. 7.

    Sgiarovello C, Peressi M, Resta R (2001) Electron localization in the insulating state: application to crystalline semiconductors. Phys Rev B 64:115202

    Article  Google Scholar 

  8. 8.

    Resta R (2002) Why are insulators insulating and metals conducting? J Phys Condens Matter 14:R625–R656

    Article  CAS  Google Scholar 

  9. 9.

    Resta R (2005) Electron localization in the quantum hall regime. Phys Rev Lett 95:196805

    Article  Google Scholar 

  10. 10.

    Resta R (2011) The insulating state of matter: a geometrical theory. Eur Phys J B 79:121–137

    Article  CAS  Google Scholar 

  11. 11.

    Resta R (2006) Polarization fluctuations in insulators and metals: new and old theories merge. Phys Rev Lett 96:137601

    Article  Google Scholar 

  12. 12.

    Resta R (2006) Kohns theory of the insulating state: a quantum-chemistry viewpoint. J Chem Phys 124:104104

    Article  Google Scholar 

  13. 13.

    Souza I, Wilkens T, Martin R (2000) Polarization and localization in insulators: generating function approach. Phys Rev B 62:1666–1683

    Article  CAS  Google Scholar 

  14. 14.

    Brea O, El Khatib M, Angeli C, Bendazzoli GL, Evangelisti S, Leininger T (2013) Behavior of the position–spread tensor in diatomic systems. J Chem Theory Comput 9:5286–5295

    Article  CAS  Google Scholar 

  15. 15.

    Ángyán JG (2009) Electron localization and the second moment of the exchange hole. Int J Quantum Chem 109:2340–2347

    Article  Google Scholar 

  16. 16.

    Ángyán J (2011) Linear response and measures of electron delocalization in molecules. Curr Org Chem 15:3609–3618

    Article  Google Scholar 

  17. 17.

    Bendazzoli GL, Evangelisti S, Monari A, Paulus B, Vetere V (2008) Full configuration-interaction study of the metal-insulator transition in model systems. J Phys Conf Ser 117:012005

    Article  Google Scholar 

  18. 18.

    Vetere V, Monari A, Bendazzoli GL, Evangelisti S, Paulus B (2008) Full configuration interaction study of the metal-insulator transition in model systems: LiN linear chains (N = 2, 4, 6, 8). J Chem Phys 128:024701

  19. 19.

    Bendazzoli GL, Evangelisti S, Monari A, Resta R (2010) Kohns localization in the insulating state: one-dimensional lattices, crystalline versus disordered. J Chem Phys 133:064703

    Article  Google Scholar 

  20. 20.

    Bendazzoli GL, Evangelisti S, Monari A (2011) Full-configuration-interaction study of the metal- insulator transition in a model system: Hn linear chains \(\text{ n }=4,6,\ldots,16\). Int J Quantum Chem 111:3416–3423

    Article  CAS  Google Scholar 

  21. 21.

    Giner E, Bendazzoli GL, Evangelisti S, Monari A (2013) Full-configuration-interaction study of the metal-insulator transition in model systems: Peierls dimerization in H(n) rings and chains. J Chem Phys 138:074315

    Article  Google Scholar 

  22. 22.

    Vetere V, Monari A, Scemama A, Bendazzoli GL, Evangelisti S (2009) A theoretical study of linear beryllium chains: full configuration interaction. J Chem Phys 130:024301

    Article  Google Scholar 

  23. 23.

    Evangelisti S, Bendazzoli GL, Monari A (2010) Electron localizability and polarizability in tight-binding graphene nanostructures. Theor Chem Acc 126:257–263

    Article  CAS  Google Scholar 

  24. 24.

    Bendazzoli GL, El Khatib M, Evangelisti S, Leininger T (2014) The total position spread in mixed-valence compounds: a study on the H4+ model system. J Comput Chem 35:802–808

    Article  CAS  Google Scholar 

  25. 25.

    Monari A, Bendazzoli GL, Evangelisti S (2008) The metal-insulator transition in dimerized Hückel chains. J Chem Phys 129:134104

    Article  Google Scholar 

  26. 26.

    Bendazzoli GL, Evangelisti S, Monari A (2012) Asymptotic analysis of the localization spread and polarizability of 1-D noninteracting electrons. Int J Quantum Chem 112:653–664

    Article  CAS  Google Scholar 

  27. 27.

    Horodecki R, Horodecki M, Horodecki K (2009) Quantum entanglement. Rev Mod Phys 81:865–942

    Article  CAS  Google Scholar 

  28. 28.

    Gühne O, Tóth G (2009) Entanglement detection. Phys Rep 474:1–75

    Article  Google Scholar 

  29. 29.

    El Khatib M, Brea O, Fertitta E, Bendazzoli L, Evangelisti S, Leininger T (2014) The total position–spread tensor : spin partition (submitted to JCP)

  30. 30.

    Peierls RE (1955) Quantum theory of solids. Clarendon Press, Oxford

  31. 31.

    Mott NF (1968) Metal-insulator transition. Rev Mod Phys 40:677–683

    Article  CAS  Google Scholar 

  32. 32.

    Kubo R (1962) Generalized cumulant expansion method. J Phys Soc Jpn 17:1100–1120

    Article  Google Scholar 

  33. 33.

    El Khatib M, Leininger T, Bendazzoli GL, Evangelisti S (2014) Computing the position–spread tensor in the CAS-SCF formalism. Chem Phys Lett 591:58–63

    Article  CAS  Google Scholar 

  34. 34.

    NEPTUNUS is a FORTRAN code for the calculation of FCI energies and properties written by Bendazzoli GL, Evangelisti S with contributions from Gagliardi L, Giner E, Monari A, Verdicchio M.

  35. 35.

    Bendazzoli GL, Evangelisti S (1993) A vector and parallel full configuration interaction algorithm. J Chem Phys 98:3141

    Article  CAS  Google Scholar 

  36. 36.

    Bendazzoli GL, Evangelisti S (1993) Computation and analysis of the full configuration interaction wave function of some simple systems. Int J Quantum Chem 48:287–301

    Article  Google Scholar 

  37. 37.

    Gagliardi L, Bendazzoli GL, Evangelisti S (1997) Direct-list algorithm for configuration interaction calculations. J Comput Chem 18:1329–1343

    Article  CAS  Google Scholar 

  38. 38.

    Tunega D, Noga J (1998) Static electric properties of LiH: explicitly correlated coupled cluster calculations. Theor Chim Acta 100:78–84

    Article  CAS  Google Scholar 

  39. 39.

    Angeli C, Bendazzoli GL, Evangelisti S (2013) The localization tensor for the H2 molecule: closed formulae for the Heitler–London and related wavefunctions and comparison with full configuration interaction. J Chem Phys 138:054314

    Article  Google Scholar 

  40. 40.

    Dalton A Molecular electronic structure program See:

  41. 41.

    Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9:10–20

    Article  CAS  Google Scholar 

  42. 42.

    Millman KJ, Aivazis M (2011) Python for scientists and engineers. Comput Sci Eng 13:9–12

    Article  Google Scholar 

  43. 43.

    van der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 13:22–30

    Article  Google Scholar 

Download references


We thank the University of Toulouse and the French CNRS for financial support. MEK and EF acknowledge the ANR-DFG action (ANR-11-INTB-1009 MITLOW PA1360/6-1) for their PhD grant. OB thanks to the Spanish “Ministerio de Educación Cultura y Deporte” for her PhD grant. We acknowledge the support of the Erasmus Mundus programme of the European Union (FPA 2010-0147). This work was supported by the Programme Investissements d’Avenir under the program ANR-11-IDEX-0002-02, reference ANR-10-LABX-0037-NEXT. We thank Prof. R. Cimiraglia of the University of Ferrara for using his 4-index transformation code. Finally, we also thank the HPC resources of CALMIP under the allocation 2011-[p1048].

Author information



Corresponding author

Correspondence to Stefano Evangelisti.

Additional information

Published as part of the special collection of articles derived from the 9th Congress on Electronic Structure: Principles and Applications (ESPA 2014).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 178 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El Khatib, M., Brea, O., Fertitta, E. et al. Spin delocalization in hydrogen chains described with the spin-partitioned total position-spread tensor. Theor Chem Acc 134, 29 (2015).

Download citation


  • Hydrogen chains
  • Total position spread
  • Full CI
  • Spintronics
  • Spin fluctuation