Skip to main content
Log in

Non-parametrized functionals with empirical dispersion corrections: A happy match?

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The performances of two parametrized functionals (namely B3LYP and B2PYLP) have been compared with those of two non-parametrized functionals (PBE0 and PBE0-DH) on a relatively large benchmark set when three different types of dispersion corrections are applied [namely the D2, D3 and D3(BJ) models]. Globally, the MAD computed using non-parametrized functionals decreases when adding dispersion terms although the accuracy not necessarily increases with the complexity of the model of dispersion correction used. In particular, the D2 correction is found to improve the performances of both PBE0 and PBE0-DH, while no systematic improvement is observed going from D2 to D3 or D3(BJ) corrections. Indeed when including dispersion, the number of sets for which PBE0-DH is the best performing functional decreases at the benefit of B2PLYP. Overall, our results clearly show that inclusion of dispersion corrections is more beneficial to parametrized double-hybrid functionals than to non-parametrized ones. The same conclusions globally hold for the corresponding global hybrids, showing that the marriage between non-parametrized functionals and empirical corrections may be a difficult deal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Perdew JP, Ruzsinszky A, Constantin LA, Sun J, Csonka GI (2009) J Chem Theory Comput 5:902

    CAS  Google Scholar 

  2. Adamo C, Barone V (2009) J Chem Phys 110:6158

    Google Scholar 

  3. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029

    CAS  Google Scholar 

  4. Becke AD (1993) J Chem Phys 98:1372

    CAS  Google Scholar 

  5. Barone V, Adamo C (1994) Chem Phys Lett 224:432

    CAS  Google Scholar 

  6. Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393:51

    CAS  Google Scholar 

  7. Vydrov OA, Heyd J, Krukau A, Scuseria GE (2006) J Chem Phys 125:074106

    Google Scholar 

  8. Vydrov OA, Scuseria GE, Perdew JP (2007) J Chem Phys 126:154109

    Google Scholar 

  9. Zhang IY, Wu JM, Xu X (2010) Chem Commun 46:3057

    CAS  Google Scholar 

  10. Xu X, Zhang IY (2011) Int Rev Phys Chem 30:115

    Google Scholar 

  11. Sancho-Garcia JC, Adamo C (2013) Phys Chem Chem Phys 15:14581

    CAS  Google Scholar 

  12. Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 128:4786

    Google Scholar 

  13. Erzhernof M (1996) Chem Phys Lett 263:499

    Google Scholar 

  14. Zhang Y, Xu X, Goddard WA III (2009) Proc Natl Acad Sci USA 106:4963

    CAS  Google Scholar 

  15. Grimme S (2006) J Chem Phys 124:034108

    Google Scholar 

  16. Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9:3397

    CAS  Google Scholar 

  17. Schwabe T, Grimme S (2006) Phys Chem Chem Phys 8:4398

    CAS  Google Scholar 

  18. Karton A, Tarnopolsky A, Lamere JF, Schatz GC, Martin JML (2008) J Phys Chem A 112:12868

    CAS  Google Scholar 

  19. Tarnopolsky A, Karton A, Sertchook R, Vuzman D, Martin JML (2008) J Phys Chem A 112:3–8

    CAS  Google Scholar 

  20. Kozuch S, Gruzman D, Martin JML (2010) J Phys Chem C 114:20801

    CAS  Google Scholar 

  21. Kozuch S, Martin JML (2011) Phys Chem Chem Phys 13:20104

    CAS  Google Scholar 

  22. Goerigk L, Grimme S (2011) Phys Chem Chem Phys 13:6670

    CAS  Google Scholar 

  23. Zhang IY, Xu X, Jung Y, Goddard WA III (2011) Proc Natl Acad Sci USA 108:19896

    CAS  Google Scholar 

  24. Zhang IY, Su NQ, Bremond E, Adamo C, Xu X (2012) J Chem Phys 136:174103

    Google Scholar 

  25. Sharkas K, Toulouse J, Savin A (2011) J Chem Phys 134:064113

    Google Scholar 

  26. Brémond E, Adamo C (2011) J Chem Phys 35:024106

    Google Scholar 

  27. Toulouse J, Sharkas K, Brémond E, Adamo C (2011) J Chem Phys 135:101102

    Google Scholar 

  28. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029

    CAS  Google Scholar 

  29. Ciofini I, Adamo C, Barone V (2004) J Chem Phys 121:6710

    CAS  Google Scholar 

  30. Adamo C, Cossi M, Scalmani G, Barone V (1999) Chem Phys Lett 307:265

    CAS  Google Scholar 

  31. Wu X, Selloni A, Car R (2009) Phys Rev B 79:085102

    Google Scholar 

  32. Zhang C, Donadio D, Gygi F, Galli G (2011) J Chem Theory Comput 7:1443

    CAS  Google Scholar 

  33. Da Silva JLF, Ganduglia-Pirovano MV, Sauer J, Bayer V, Kresse G (2007) Phys Rev B 75:045121

    Google Scholar 

  34. Waller MP, Braun H, Hojdis N, Bühl M (2007) J Chem Theory Comput 3:2234

    CAS  Google Scholar 

  35. Harris J (1984) Phys Rev A 29:1648

    CAS  Google Scholar 

  36. Bousquet D, Brémond E, Sancho-Garcia JC, Ciofini I, Adamo C (2013) J Chem Theory Comput 9:3444

    CAS  Google Scholar 

  37. Goerigk L, Grimme S (2010) J Chem Theory Comput 6:107

    CAS  Google Scholar 

  38. Goerigk L, Grimme S (2011) J Chem Theory Comput 7:291

    CAS  Google Scholar 

  39. Grimme S (2004) J Comp Chem 25:1463

    CAS  Google Scholar 

  40. Grimme S (2006) J Comp Chem 27:1787

    CAS  Google Scholar 

  41. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Google Scholar 

  42. Schwabe T, Grimme S (2008) Acc Chem Res 41:569

    CAS  Google Scholar 

  43. Aragó J, Ortí E, Sancho-García JC (2013) J Chem Theory Comput 9:3347

    Google Scholar 

  44. Grimme S, Ehrlich S, Goerigk LJ (2011) Comput Chem 32:1456

    CAS  Google Scholar 

  45. Becke AD, Johnson ER (2005) J Chem Phys 122:154101

    Google Scholar 

  46. Johnson ER, Becke AD (2005) J Chem Phys 123:024101

    Google Scholar 

  47. Johnson ER, Becke AD (2006) J Chem Phys 124:174104

    Google Scholar 

  48. Risthauss T, Grimme S (2013) J Chem Theory Comput 9:1580

    Google Scholar 

  49. Tkatchenko A, DiStatio JRA, Car R, Scheffler M (2012) Phys Rev Lett 108:236402

    Google Scholar 

  50. Zhang IY, Xu X (2013) J Phys Chem Lett 4:1669

    CAS  Google Scholar 

  51. Chai J, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615

    CAS  Google Scholar 

  52. Jurecka P, Sponer J, Cerný J, Hobza P (2006) Phys Chem Chem Phys 8:1985

    CAS  Google Scholar 

  53. Takatani T, Hohenstein EG, Malagoli M, Marshall MS, Sherrill CD (2010) J Chem Phys 132:144104

    Google Scholar 

  54. Sancho-Garcìa JC (2012) Chem Phys Lett 136:535

    Google Scholar 

  55. Csonka GI, French AD, Johnson GP, Stortz CA (2009) J Chem Theory Comput 5:679

    CAS  Google Scholar 

  56. Gruzman D, Karton A, Martin JML (2009) J Phys Chem A 113:11974–11983

    CAS  Google Scholar 

  57. Wilke JJ, Lind MC, Schaefer HF III, Csaszar AG, Allen WD (2009) J Chem Theory Comput 5:1511

    CAS  Google Scholar 

  58. Tsuzuki S, Honda K, Uchimaru T, Mikami M (2006) J Chem Phys 124:114304

    Google Scholar 

  59. Goll E, Werner HJ, Stoll H (2005) Phys Chem Chem Phys 7:3917

    CAS  Google Scholar 

  60. Ogilvie JF, Wang FJH (1992) J Mol Struct 273:277

    CAS  Google Scholar 

  61. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth G A, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision A01. Gaussian Inc, Wallingford, CT

  62. Toulouse J, Savin A, Adamo C (2002) J Chem Phys 117:10465

    CAS  Google Scholar 

  63. Tognetti V, Cortona P, Adamo C (2008) J Chem Phys 128:34101

    Google Scholar 

  64. Neese F (2012) Wiley Interdiscip Rev: Comput Mol Sci 2:73

    CAS  Google Scholar 

  65. Weigend T, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    CAS  Google Scholar 

  66. Karton A, Martin JML (2011) J Chem Phys 135:144119

    Google Scholar 

  67. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221

    CAS  Google Scholar 

  68. Bryantsev VS, Diallo MS, van Duin ACT, Goddard WA (2009) J Chem Theory Comput 5:1016–1026

    CAS  Google Scholar 

  69. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796

    CAS  Google Scholar 

  70. Řeha D, Valdés H, Vondrášek J, Hobza P, Abu-Riziq A, Crews B, de Vries MS (2005) Chem: A Eur J 11:6803

    Google Scholar 

  71. Grimme S (2006) Angew Chem Int Ed 45:4460

    CAS  Google Scholar 

  72. Huenerbein R, Schirmer B, Moellmann J, Grimme S (2010) Phys Chem Chem Phys 12:6940

    CAS  Google Scholar 

  73. Guner V, Khuong KS, Leach AG, Lee PS, Bartberger MD, Houk KN (2003) J Phys Chem A 107:11445

    CAS  Google Scholar 

  74. Steinmann SN, Csonka G, Corminboeuf C (2009) J Chem Theory Comput 5:2950

    CAS  Google Scholar 

  75. Hehre WJ, Ditchfield R, Radom L, Pople JA (1970) J Am Chem Soc 92:4796

    CAS  Google Scholar 

  76. Radom L, Hehre WJ, Pople JA (1971) J Am Chem Soc 93:289

    Google Scholar 

  77. Wodrich MD, Jana DF, Schleyer PVR, Corminboeuf C (2008) J Phys Chem A 112:11495

    CAS  Google Scholar 

  78. Krieg H, Grimme S (2010) Mol Phys 108:2655

    CAS  Google Scholar 

  79. Feller D, Glendening ED, Woon DE, Feyereisen MW (1995) J Chem Phys 103:3526

    CAS  Google Scholar 

  80. Feyereisen MW, Feller D, Dixon DA (1996) J Phys Chem 100:2993

    CAS  Google Scholar 

  81. Bernholdt DE, Harrison RJ (1996) Chem Phys Lett 250:477

    CAS  Google Scholar 

  82. http://www.thch.uni-bonn.de/tc/

  83. Piacenza M, Grimme S (2004) J Comput Chem 25:83

    CAS  Google Scholar 

  84. Grimme S, Mück-Lichtenfeld C (2002) Chem Phys Chem 2:207

    Google Scholar 

  85. Woodcock HL, Schaefer HF, Schreiner PR (2002) J Phys Chem A 106:11923

    CAS  Google Scholar 

  86. Schreiner PR, Fokin AA, Pascal RA, de Meijere A (2006) Org Lett 8:363

    Google Scholar 

  87. Lepetit C, Chermette H, Gicquel M, Heully JL, Chauvin R (2007) J Phys Chem A 111:136

    CAS  Google Scholar 

  88. Grimme S, Mück-Lichtenfeld C, Würthwein EU, Ehlers AW, Goumans TPM, Lammertsma K (2010) J Phys Chem A 110:2583

    Google Scholar 

  89. Lee JS (2005) J Phys Chem A 109:11927

    CAS  Google Scholar 

  90. Grimme S (2006) J Chem Phys 124:034108

    Google Scholar 

  91. Lacks DJ, Gordon RG (1993) Phys Rev A 47:4681

    CAS  Google Scholar 

  92. Adamo C, Barone V (1998) J Chem Phys 108:664

    CAS  Google Scholar 

  93. Zhang Y, Pan W, Yang W (1997) J Chem Phys 107:7921

    CAS  Google Scholar 

  94. Kannemann F, Becke AD (2009) J Chem Theory Comput 5:719

    CAS  Google Scholar 

  95. Zhao Y, Tishchenko O, Gour JR, Li W, Lutz JJ, Piecuch P, Truhlar DG (2009) J Phys Chem A 113:5786

    CAS  Google Scholar 

  96. Johnson ER, Mori-Sànchez P, Cohen AJ, Yang WJ (2008) Chem Phys 129:204112

    Google Scholar 

  97. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063

    CAS  Google Scholar 

  98. Halkier A, Helgaker T, Jørgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:243

    CAS  Google Scholar 

  99. Gilbert TMJ (2004) J Phys Chem A 108:2550

    CAS  Google Scholar 

  100. Neese F, Schwabe T, Kossmann S, Schirmer B, Grimme S (2009) J Chem Theory Comput 5:3060–3073

    CAS  Google Scholar 

  101. Zipse H (2006) Top Curr Chem 263:163

    CAS  Google Scholar 

  102. Korth M, Grimme S (2009) J Chem Theory Comput 5:993

    CAS  Google Scholar 

  103. Parthiban S, Martin JML (2001) J Chem Phys 114:6014

    CAS  Google Scholar 

  104. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:10478

    CAS  Google Scholar 

  105. Martin JML, de Oliveira G (1999) J Chem Phys 111:1843

    CAS  Google Scholar 

  106. Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108:2715

    CAS  Google Scholar 

  107. Zhao Y, Gonzalez-Garcia N, Truhlar DG (2005) J Phys Chem A 109:2012

    CAS  Google Scholar 

  108. Grimme S, Steinmetz M, Korth M (2007) J Org Chem 72:2118

    CAS  Google Scholar 

  109. Ogilvie JF, Wang FJH (1993) J Mol Struct 291:313

    CAS  Google Scholar 

  110. Runeberg N, Pyykö P (1998) Int J Quantum Chem 66:131–140

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the ANR agency under the Project DinfDFT ANR 2010 BLANC n. 0425.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Adamo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2014_1602_MOESM1_ESM.pdf

Supporting Information Available: Computed MADs and RMSDs over the different subsets, and rare gas dimer potential energy surfaces (PDF 836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bousquet, D., Brémond, E., Sancho-García, J.C. et al. Non-parametrized functionals with empirical dispersion corrections: A happy match?. Theor Chem Acc 134, 1602 (2015). https://doi.org/10.1007/s00214-014-1602-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1602-6

Keywords

Navigation