Skip to main content
Log in

Quantum molecular dynamics simulations of liquid benzene using orbital optimization

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The structure of liquid benzene is investigated by quantum molecular dynamics simulations. Results using variationally optimized numerical pseudo-atomic orbitals are compared to those of generic optimized orbitals. The accuracy of the first-principle calculations is compared with recent experimental findings. Simulations using minimal basis sets with optimized orbitals are shown to successfully predict the local structure of liquid benzene, while simulations with non-optimized minimal basis sets have significant errors in the structure of the first solvation shell. The use of a minimal optimized basis set considerably speeds up simulations, while preserving much of the accuracy of a larger basis set formed by generic orbitals. The transferability of the optimized orbitals is also explored under different environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vallee R et al (2000) Nonlinear optical properties and crystalline orientation of 2-methyl-4-nitroaniline layers grown on nanostructured poly(tetrafluoroethylene) substrates. J Am Chem Soc 122(28):6701–6709

    Article  CAS  Google Scholar 

  2. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42(11):1210–1250

    Article  CAS  Google Scholar 

  3. Baker CM, Grant GH (2007) Role of aromatic amino acids in protein–nucleic acid recognition. Biopolymers 85(5–6):456–470

    Article  CAS  Google Scholar 

  4. Hunter CA (1993) Aromatic interactions in proteins, DNA and synthetic receptors. Philos Trans R Soc Mathe Phys Eng Sci 345(1674):77–85

    Article  CAS  Google Scholar 

  5. Cox EG, Smith JAS (1954) Crystal structure of benzene at-3-degrees-C. Nature 173(4393):75

    Article  CAS  Google Scholar 

  6. Cox EG, Cruickshank DWJ, Smith JAS (1955) Crystal structure of benzene—new type of systematic error in precision X-ray crystal analysis. Nature 175(4461):766

    Article  CAS  Google Scholar 

  7. Cox EG, Cruickshank DWJ, Smith JAS (1958) The crystal structure of benzene at-3-degrees-C. Proc R Soc Lond Ser Mathe Phys Sci 247(1248):1–21

    Article  CAS  Google Scholar 

  8. Janda KC et al (1975) Benzene dimer—polar molecule. J Chem Phys 63(4):1419–1421

    Article  CAS  Google Scholar 

  9. Steed JM, Dixon TA, Klemperer W (1979) Molecular-beam studies of benzene dimer, hexafluorobenzene dimer and benzene–hexafluorobenzene. J Chem Phys 70(11):4940–4946

    Article  CAS  Google Scholar 

  10. Hopkins JB, Powers DE, Smalley RE (1981) Mass-selective 2-color photo-ionization of benzene clusters. J Phys Chem 85(25):3739–3742

    Article  CAS  Google Scholar 

  11. Langridgesmith PRR et al (1981) Ultraviolet-spectra of benzene clusters. J Phys Chem 85(25):3742–3746

    Article  CAS  Google Scholar 

  12. Venturo VA, Felker PM (1993) Intermolecular Raman bands in the ground-state of benzene dimer. J Chem Phys 99(1):748–751

    Article  CAS  Google Scholar 

  13. Hobza P, Selzle HL, Schlag EW (1996) Potential energy surface for the benzene dimer. Results of ab initio CCSD(T) calculations show two nearly isoenergetic structures: T-shaped and parallel-displaced. J Phys Chem 100(48):18790–18794

    Article  CAS  Google Scholar 

  14. Sato T, Tsuneda T, Hirao K (2005) A density-functional study on pi-aromatic interaction: benzene dimer and naphthalene dimer. J Chem Phys 123(10):104307

    Article  Google Scholar 

  15. Sinnokrot MO, Sherrill CD (2006) High-accuracy quantum mechanical studies of pi–pi interactions in benzene dimers. J Phys Chem A 110(37):10656–10668

    Article  CAS  Google Scholar 

  16. van der Avoird A et al (2010) Vibration–rotation–tunneling states of the benzene dimer: an ab initio study. Phys Chem Chem Phys 12(29):8219–8240

    Article  Google Scholar 

  17. Henson BF et al (1992) Raman-vibronic double-resonance spectroscopy of benzene dimer isotopomers. J Chem Phys 97(4):2189–2208

    Article  CAS  Google Scholar 

  18. Erlekam U et al (2006) An experimental value for the B-1u C–H stretch mode in benzene. J Chem Phys 124(17):171101

    Article  Google Scholar 

  19. Tsuzuki S et al (2005) Ab initio calculations of structures and interaction energies of toluene dimers including CCSD(T) level electron correlation correction. J Chem Phys 122(14):144323

    Article  Google Scholar 

  20. Lowden LJ, Chandler D (1974) Theory of intermolecular pair correlations for molecular liquids—applications to liquids carbon-tetrachloride, carbon-disulfide, carbon diselenide, and benzene. J Chem Phys 61(12):5228–5241

    Article  CAS  Google Scholar 

  21. Narten AH (1968) Diffraction pattern and structure of liquid benzene. J Chem Phys 48(4):1630–1634

    Article  CAS  Google Scholar 

  22. Narten AH (1977) X-ray-diffraction pattern and models of liquid benzene. J Chem Phys 67(5):2102–2108

    Article  CAS  Google Scholar 

  23. Katayama M et al (2010) Liquid structure of benzene and its derivatives as studied by means of X-ray scattering. Phys Chem Liq 48(6):797–809

    Article  CAS  Google Scholar 

  24. Bartsch E et al (1985) A neutron and X-ray-diffraction study of the binary-liquid aromatic system benzene-hexafluorobenzene.1. The pure components. Ber Bunsen Ges Phys Chem Chem Phys 89(2):147–156

    Article  CAS  Google Scholar 

  25. Headen TF et al (2010) Structure of pi–pi interactions in aromatic liquids. J Am Chem Soc 132(16):5735–5742

    Article  CAS  Google Scholar 

  26. Tassaing T et al (2000) The structure of liquid and supercritical benzene as studied by neutron diffraction and molecular dynamics. J Chem Phys 113(9):3757–3765

    Article  CAS  Google Scholar 

  27. Misawa M, Fukunaga T (1990) Structure of liquid benzene and naphthalene studied by pulsed neutron total scattering. J Chem Phys 93(5):3495–3502

    Article  CAS  Google Scholar 

  28. Fu C-F, Tian SX (2011) A comparative study for molecular dynamics simulations of liquid benzene. J Chem Theory Comput 7(7):2240–2252

    Article  CAS  Google Scholar 

  29. Bogdan TV (2006) Atom-atomic potentials and the correlation distribution functions for modeling liquid benzene by the molecular dynamics methods. Russ J Phys Chem 80:S14–S20

    Article  CAS  Google Scholar 

  30. Chelli R et al (2001) The fast dynamics of benzene in the liquid phase—Part II. A molecular dynamics simulation. Phys Chem Chem Phys 3(14):2803–2810

    Article  CAS  Google Scholar 

  31. Baker CM, Grant GH (2006) The structure of liquid benzene. J Chem Theory Comput 2(4):947–955

    Article  CAS  Google Scholar 

  32. Coutinho K, Canuto S, Zerner MC (1997) Calculation of the absorption spectrum of benzene in condensed phase. A study of the solvent effects. Int J Quantum Chem 65(5):885–891

    Article  CAS  Google Scholar 

  33. Jorgensen WL et al (1993) Monte-Carlo simulations of pure liquid substituted benzenes with OPLS potential functions. J Comput Chem 14(2):206–215

    Article  CAS  Google Scholar 

  34. Cabaco MI et al (1997) Neutron diffraction and molecular dynamics study of liquid benzene and its fluorinated derivatives as a function of temperature. J Phys Chem B 101(35):6977–6987

    Article  CAS  Google Scholar 

  35. Hunter CA, Sanders JKM (1990) The nature of pi–pi interactions. J Am Chem Soc 112(14):5525–5534

    Article  CAS  Google Scholar 

  36. Righini R (1993) Ultrafast optical kerr-effect in liquids and solids. Science 262(5138):1386–1390

    Article  CAS  Google Scholar 

  37. Zorkii PM, Lanshina LV, Bogdan TV (2008) Computer simulation and diffraction studies of the structure of liquid benzene. J Struct Chem 49(3):524–547

    Article  CAS  Google Scholar 

  38. Forsman J, Woodward CE, Trulsson M (2011) A classical density functional theory of ionic liquids. J Phys Chem B 115(16):4606–4612

    Article  CAS  Google Scholar 

  39. Song Z, Wang H, Xing L (2009) Density functional theory study of the ionic liquid [emim]OH and complexes [emim]OH(H2O) n (n = 1,2). J Solut Chem 38(9):1139–1154

    Article  CAS  Google Scholar 

  40. Umebayashi Y et al (2009) Raman spectroscopic study, DFT calculations and MD simulations on the conformational isomerism of N-Alkyl-N-methylpyrrolidinium Bis-(trifluoromethanesulfonyl) amide ionic liquids. J Phys Chem B 113(13):4338–4346

    Article  CAS  Google Scholar 

  41. Waller MP et al (2006) Hybrid density functional theory for pi-stacking interactions: application to benzenes, pyridines, and DNA bases. J Comput Chem 27(4):491–504

    Article  CAS  Google Scholar 

  42. Yan Z, Truhlar DG (2005) How well can new-generation density functional methods describe stacking interactions in biological systems? Phys Chem Chem Phys 7(14):2701–2705

    Article  Google Scholar 

  43. Tachikawa H (2013) Double pi-pi stacking dynamics of benzene trimer cation: direct ab initio molecular dynamics (AIMD) study. Theor Chem Acc 132(7):1374

  44. Sherrill CD, Takatani T, Hohenstein EG (2009) An assessment of theoretical methods for nonbonded interactions: comparison to complete basis set limit coupled-cluster potential energy curves for the benzene dimer, the methane dimer, benzene-methane, and benzene-H2S. J Phys Chem A 113(38):10146–10159

    Article  CAS  Google Scholar 

  45. Pitonak M et al (2008) Benzene dimer: high-level wave function and density functional theory calculations. J Chem Theory Comput 4(11):1829–1834

    Article  CAS  Google Scholar 

  46. Wen X-D, Hoffmann R, Ashcroft NW (2011) Benzene under high pressure: a story of molecular crystals transforming to saturated networks, with a possible intermediate metallic phase. J Am Chem Soc 133(23):9023–9035

    Article  CAS  Google Scholar 

  47. Wang C, Zhang P (2010) The equation of state and nonmetal–metal transition of benzene under shock compression. J Appl Phys 107(8):083502

    Article  Google Scholar 

  48. Goldman N et al (2005) Bonding in the superionic phase of water. Phys Rev Lett 94(21):217801

    Article  Google Scholar 

  49. Schwegler E et al (2008) Melting of ice under pressure. Proc Natl Acad Sci U S A 105(39):14779–14783

    Article  CAS  Google Scholar 

  50. Ozaki T (2003) Variationally optimized atomic orbitals for large-scale electronic structures. Phys Rev B 67(15):155108

    Article  Google Scholar 

  51. Ozaki T, Kino H (2004) Numerical atomic basis orbitals from H to Kr. Phys Rev B 69(19):195113

    Article  Google Scholar 

  52. Junquera J et al (2001) Numerical atomic orbitals for linear-scaling calculations. Phys Rev B 64(23):235111

    Article  Google Scholar 

  53. Corsetti F et al (2013) Optimal finite-range atomic basis sets for liquid water and ice. J Phys: Condens Matter 25(43):435504

    Google Scholar 

  54. Ozaki T, Kino H (2004) Variationally optimized basis orbitals for biological molecules. J Chem Phys 121(22):10879–10888

    Article  CAS  Google Scholar 

  55. Ohwaki T et al (2012) Large-scale first-principles molecular dynamics for electrochemical systems with O(N) methods. J Chem Phys 136(13):134101

    Article  Google Scholar 

  56. Jorgensen WL, Tiradorives J (1988) The OPLS potential functions for proteins—energy minimizations for crystals of cyclic-peptides and crambin. J Am Chem Soc 110(6):1657–1666

    Article  CAS  Google Scholar 

  57. Jorgensen WL, Severance DL (1990) Aromatic aromatic interactions—free-energy profiles for the benzene dimer in water, chloroform, and liquid benzene. J Am Chem Soc 112(12):4768–4774

    Article  CAS  Google Scholar 

  58. Van der Spoel D et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  Google Scholar 

  59. Hess B (2009) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Abstracts of Papers of the American Chemical Society 237

  60. NISTChemistryWebBook. http://webbook.nist.gov/chemistry

  61. Nose S (1984) A molecular-dynamics method for simulations in the canonical ensemble. Mol Phys 52(2):255–268

    Article  CAS  Google Scholar 

  62. Hoover WG (1985) Canonical dynamics—equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697

    Article  Google Scholar 

  63. Parrinello M, Rahman A (1981) Polymorphic transitions in single-crystals—a new molecular-dynamics method. J Appl Phys 52(12):7182–7190

    Article  CAS  Google Scholar 

  64. Nose S, Klein ML (1983) Constant pressure molecular-dynamics for molecular-systems. Mol Phys 50(5):1055–1076

    Article  CAS  Google Scholar 

  65. Hess B et al (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

    Article  CAS  Google Scholar 

  66. Hess B (2008) P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4(1):116–122

    Article  CAS  Google Scholar 

  67. Ozaki T, Kino H (2005) Efficient projector expansion for the ab initio LCAO method. Phys Rev B 72(4):045121

    Article  Google Scholar 

  68. OpenMX. http://www.openmx-square.org/

  69. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136(3B):B864

    Article  Google Scholar 

  70. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  71. Morrison I, Bylander DM, Kleinman L (1993) Nonlocal hermitian norm-conserving vanderbilt pseudopotential. Phys Rev B 47(11):6728–6731

    Article  CAS  Google Scholar 

  72. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  CAS  Google Scholar 

  73. Soler JM et al (2002) The SIESTA method for ab initio order-N materials simulation. J Phys: Condens Matter 14(11):2745–2779

    CAS  Google Scholar 

  74. Ozaki T (2006) O(N) Krylov-subspace method for large-scale ab initio electronic structure calculations. Physical Review B 74(24):245101

    Article  Google Scholar 

  75. Woodcock LV (1971) Isothermal molecular dynamics calculations for liquid salts. Chem Phys Lett 10(3):257–261

    Article  CAS  Google Scholar 

  76. Nose S (1984) A unified formulation of the constant temperature molecular-dynamics methods. J Chem Phys 81(1):511–519

    Article  CAS  Google Scholar 

  77. Takeuchi H (2012) Structural features of small benzene clusters (C6H6)(n) (n <= 30) as investigated with the All-Atom OPLS potential. J Phys Chem A 116(41):10172–10181

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Laurence E. Fried thanks Prof. Gregory S. Ezra for his patient encouragement and guidance at Cornell University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence E. Fried.

Additional information

Dedicated to Professor Greg Ezra and published as part of the special collection of articles celebrating his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ileri, N., Fried, L.E. Quantum molecular dynamics simulations of liquid benzene using orbital optimization. Theor Chem Acc 133, 1575 (2014). https://doi.org/10.1007/s00214-014-1575-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1575-5

Keywords

Navigation