Skip to main content

Advertisement

Log in

Electronic properties of mixed metal rod-like group 13 nitride oligomers [RMNH]10 and [R3(RMNH)9H3] (M = Al, Ga, In; R = CH3)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Structural and electronic properties of the rod-like oligomers formed by stacking of three [RMNH]3 rings and have been theoretically investigated using DFT/TDDFT methods. Two types of oligomers have been considered: closed ones (terminated by RM and NH units) and open ones (terminated by three methyl groups and three hydrogen atoms). It is shown that terminal groups have significant influence on the electronic properties of oligomers due to the highly edge-localized nature of band gap states and huge difference in dipole moments. Ground state DFT calculations reveal that compared to closed oligomers, a profound reduction of energy gaps (by 1.6, 1.3 and 0.8 eV for M = Al, Ga, and In, respectively) is observed for open oligomers. Substitution of Ga atoms by Al results in moderate increase of energy gaps (up to 0.5 eV). Effect of substitution Ga atoms by In depends on the position of the substituted atoms. Excited states follow the same tendencies observed for the energy gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang ZL (2010) Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today 5:540–552

    Article  Google Scholar 

  2. Li SF, Waag A (2012) GaN based nanorods for solid state lighting. J Appl Phys 111:071101–071124

    Article  Google Scholar 

  3. Pearton SJ, Abernathy CR, Thaler GT, Frazier RM, Norton DP, Ren F, Park YD, Zavada JM, Buyanova A, Chen WM, Hebard AF (2004) Wide bandgap GaN-based semiconductors for spintronics. J Phys: Condens Matter 16:R209–R245

    CAS  Google Scholar 

  4. Bhat SV, Biswas K, Rao CNR (2007) Synthesis and optical properties of in-doped GaN nanocrystals. Solid State Commun 141:325–328

    Article  CAS  Google Scholar 

  5. Sardar K, Rao CNR (2004) New solvothermal routes for GaN nanocrystals. Adv Mater 16:425–429

    Article  CAS  Google Scholar 

  6. Pierson HO (1999) Handbook of chemical vapor deposition, 2nd edition: principles, technology and applications. William Andrew, Norwich

    Google Scholar 

  7. Watson IM (2013) Metal organic vapour phase epitaxy of AlN, GaN, InN and their alloys: a key chemical technology for advanced device applications. Coord Chem Rev 257:2120–2141

    Article  CAS  Google Scholar 

  8. Sohn HY, Ryu T (2011) Chemical vapor synthesis (CVS) of Inorganic nanopowders. In: Cotler VF (ed) Nanopowders and nanocoatings: production, properties and applications, Nova Science Publishers Inc., Hauppauge 11788, pp 147–178

  9. Timoshkin AY, Schaefer HF (2008) From charge transfer complexes to nanorods. J Phys Chem C 112:13816–13836

    Article  CAS  Google Scholar 

  10. Zheng J, Yang Y, Yu B, Song X, Li X (2008) [0001] oriented aluminum nitride one-dimensional nanostructures: synthesis, structure evolution, and electrical properties. ACS Nano 2:134–142

    Article  CAS  Google Scholar 

  11. Timoshkin AY, Schaefer HF (2004) Spontaneous gas-phase generation of needle-shaped clusters which violate the isolated square rule: a facile road to GaN nanorods. J Am Chem Soc 126:12141–12154

    Article  CAS  Google Scholar 

  12. Kormos BL, Jegier JA, Ewbank PC, Pernisz U, Young VG Jr, Cramer CJ, Gladfelter WL (2005) Oligomeric rods of alkyl-and hydridogallium imides. J Am Chem Soc 127:1493–1503

    Article  CAS  Google Scholar 

  13. Timoshkin AY, Frenking G (2003) “True” inorganic heterocycles: structures and stability of group 13–15 analogues of benzene and their dimers. Inorg Chem 42:60–69

    Article  CAS  Google Scholar 

  14. Timoshkin AY, Schaefer HF (2004) Structural and thermodynamic properties of group 13 imidometallanes and their heavier analogues. Inorg Chem 43:3080–3089

    Article  CAS  Google Scholar 

  15. Timoshkin AY (2003) Hunting for a single-source precursor: toward stoichiometry controlled CVD of 13–15 composites. Solid State Electron 47:543–548

    Article  CAS  Google Scholar 

  16. Simon E, Mezey PG (2012) Imperfect periodicity and systematic changes of some structural features along linear polymers: the case of rod-like boron/nitrogen nanostructures. Theor Chem Acc 131:1097–1198

    Article  Google Scholar 

  17. Simon E, Mezey PG (2012) Fragment shape variation index for periodicity deficiency and gradual changes of internal coordinates along linear polymers. J Math Chem 50:934–941

    Article  CAS  Google Scholar 

  18. Wang JL, Lushington GH, Mezey PG (2006) Stability and electronic properties of nitrogen nanoneedles and nanotubes. J Chem Inf Mod 46:1965–1971

    Article  CAS  Google Scholar 

  19. Wang JL, Mezey PG (2006) The electronic structures and properties of open-ended and capped carbon nano-needles. J Chem Inf Mod 46:801–807

    Article  CAS  Google Scholar 

  20. Mohajeri A, Ebadi M (2012) Nano structures of group 13–15 mixed heptamer clusters: a computational study. J Phys Chem A 116:4678–4686

    Article  CAS  Google Scholar 

  21. Paier J, Marsman M, Kresse G (2007) Why does the B3LYP hybrid functional fail for metals? J Chem Phys 127:024103–024113

    Article  Google Scholar 

  22. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  23. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  24. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  25. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215

    Article  CAS  Google Scholar 

  26. Scuseria GE, Janssen CL, Schaefer HF (1988) An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. J Chem Phys 89:7382–7387

    Article  CAS  Google Scholar 

  27. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin-density calculations—a critical analysis. Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  28. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  29. Metz B, Stoll H, Dolg M (2000) Small-core multiconfiguration-Dirac–Hartree–Fock-adjusted pseudopotentials for post-d main group elements: application to PbH and PbO. J Chem Phys 113:2563–2569

    Article  CAS  Google Scholar 

  30. Stanton JF, Bartlett RJ (1993) The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. J Chem Phys 98:7029–7039

    Article  CAS  Google Scholar 

  31. Kallay M, Gauss J (2004) Calculation of excited-state properties using general coupled-cluster and configuration-interaction models. J Chem Phys 121:9257–9269

    Article  CAS  Google Scholar 

  32. Rappoport D, Furche F (2010) Property-optimized Gaussian basis sets for molecular response calculations. J Chem Phys 133:134105–134116

    Article  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, et al. (2009) Gaussian 09, Revision B.01. In Wallingford

  34. O’Boyle NM, Tenderholt AL, Langner KM (2008) CCLIB: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  Google Scholar 

  35. Morkoç H (2008) General properties of nitrides. In: Handbook of nitride semiconductors and devices, vol 1. Wiley-VCH Verlag GmbH & Co. KGaA, Berlin

  36. Carter DJ, Puckeridge M, Delley B, Stampfl C (2009) Quantum confinement effects in gallium nitride nanostructures: ab initio investigations. Nanotechnology 20:425401–425406

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by SPbSU Grants 12.38.255.2014 and 12.50.1563.2013. Research was carried out using computational resources provided by Resource Center “Computer Center of SPbU”. We thank Alexandra Oranskaya for preliminary computations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna V. Pomogaeva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 153 kb)

Supplementary material 2 (DOCX 308 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomogaeva, A.V., Timoshkin, A.Y. Electronic properties of mixed metal rod-like group 13 nitride oligomers [RMNH]10 and [R3(RMNH)9H3] (M = Al, Ga, In; R = CH3). Theor Chem Acc 133, 1572 (2014). https://doi.org/10.1007/s00214-014-1572-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1572-8

Keywords

Navigation