Skip to main content
Log in

Virtual screening of borate derivatives as high-performance additives in lithium-ion batteries

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Tris (trimethylsilyl) borate (TMSB) is well known as a novel cathode electrolyte interphase (CEI)-forming additive for improving the cycle performance of LiCoO2/graphite lithium-ion batteries. We suggest five borate derivatives as promising candidates for CEI-forming additives resulting in higher performance than TMSB as determined via first-principles density functional calculations of oxidation potentials, reduction potentials, and F binding affinities. This computational screening protocol provides a faster method for the development of new CEI-forming electrolyte additives in lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  2. Armand M, Tarascon JM (2008) Nature 451:652–657

    Article  CAS  Google Scholar 

  3. Xu K (2004) Chem Rev 104:4303–4417

    Article  CAS  Google Scholar 

  4. Cho YH, Lee SH, Hong TE, Cho J (2011) Adv Energy Mater 1:821–828

    Article  CAS  Google Scholar 

  5. Blyr A, Sigala C, Amatucci G, Guyomard D, Chabre Y, Tarascon JM (1998) J Electrochem Soc 145:194–209

    Article  CAS  Google Scholar 

  6. Pasquier AD, Blyr A, Courjal P, Larcher D, Amatucci G, Gerand B, Tarascon JM (1999) J Electrochem Soc 146:428–436

    Article  Google Scholar 

  7. Xia YY, Sakai T, Fujieda T, Yang XQ, Sun X, Ma ZF, McBreen J, Yoshio M (2001) J Electrochem Soc 148:723–729

    Article  Google Scholar 

  8. Shim J, Kostecki R, Richardson T, Song X, Striebel KA (2002) J Power Sources 112:222–230

    Article  CAS  Google Scholar 

  9. Curtis CJ, Wang JX, Schulz DL (2004) J Electrochem Soc 151:590–598

    Article  Google Scholar 

  10. Kumagai N, Komaba S, Kataoka Y, Koyanagi M (2000) Chem Lett 29:1154–1155

    Article  Google Scholar 

  11. Yamane H, Saitoh M, Sano M, Fujita M, Takada M, Nishibori E, Tanaka N (2002) J Electrochem Soc 149:1514–1520

    Article  Google Scholar 

  12. Goodenough JB (2007) J Power Sources 174:996–1000

    Article  CAS  Google Scholar 

  13. Cai Z, Liu Y, Zhao J, Li L, Zhang Y, Zhang J (2012) J Power Sources 202:341–346

    Article  CAS  Google Scholar 

  14. Liu Y, Tan L, Li L (2013) J Power Sources 221:90–96

    Article  CAS  Google Scholar 

  15. Zuo X, Fan C, Liu J, Xiao X, Wu J, Nan J (2013) J Power Sources 229:308–312

    Article  CAS  Google Scholar 

  16. Yilmazer ND, Korth M (2013) Bunsen-Mag 15:294–298

    Google Scholar 

  17. Halls MD, Tasaki K (2010) J Power Sources 195:1472–1478

    Article  CAS  Google Scholar 

  18. Park MH, Lee YS, Lee H, Han Y-K (2011) J Power Sources 196:5109–5114

    Article  CAS  Google Scholar 

  19. Han Y-K, Moon Y, Lee K, Huh YS (2014) Curr Appl Phys. doi:10.1016/j.cap.2014.04.006

    Google Scholar 

  20. Bhatt MD, Cho M, Cho K (2012) Model Simul Mater Sci Eng 20:065004

    Article  Google Scholar 

  21. Johansson P (2006) J Phys Chem A 110:12077–12080

    Article  CAS  Google Scholar 

  22. Buhrmester C, Moshurchak L, Wang RL, Dahn JR (2006) J Electrochem Soc 153:A288–A294

    Article  CAS  Google Scholar 

  23. Wang RL, Buhrmester C, Dahn JR (2006) J Electrochem Soc 153:A445–A449

    Article  CAS  Google Scholar 

  24. Wang RL, Dahn JR (2006) J Electrochem Soc 153:A1922–A1928

    Article  CAS  Google Scholar 

  25. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  26. Vosko SH, Wilk L, Nusair M (1980) Can J Chem 58:1200–1211

    CAS  Google Scholar 

  27. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  28. Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404–417

    Article  CAS  Google Scholar 

  29. Zhang SS, Jow TR, Amine K, Henriksen GL (2002) J Power Sources 107:18–23

    Article  CAS  Google Scholar 

  30. Han Y-K, Jung J, Cho J-J, Kim HJ (2003) Chem Phys Lett 368:601–608

    Article  CAS  Google Scholar 

  31. Han Y-K, Jung J, Yu S, Lee H (2009) J Power Sources 187:581–585

    Article  CAS  Google Scholar 

  32. Kang S, Park MH, Lee H, Han Y-K (2012) Electrochem Commun 23:83–86

    Article  CAS  Google Scholar 

  33. Jeon J, Yoon S, Park T, Cho J-J, Kang S, Han Y-K, Lee H (2012) J Mater Chem 22:21003–21008

    Article  CAS  Google Scholar 

  34. Jung HM, Park S-H, Jeon J, Choi Y, Yoon S, Cho J–J, Oh S, Kang S, Han Y-K, Lee H (2013) J Mater Chem A 1:11975–11981

    Article  CAS  Google Scholar 

  35. Yoon S, Kim H, Cho J-J, Han Y-K, Lee H (2013) J Power Sources 244:711–715

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Kudin TVKN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JVQC, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu GAL, Piskorz P, Komaromi I, Martin RL, Martin RLTK, Fox DJ, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Gaussian Inc, Wallingford

    Google Scholar 

  37. Nicolaides A, Borden WT (1991) J Am Chem Soc 113:6750–6755

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the IT R&D program (10041856) of MOTIE. The authors also acknowledge the financial support by the National Research Foundation of Korea Grant funded by the Korean Government (MEST, NRF-2010-C1AAA001-0029018) and by the KISTI grant (KSC-2013-C2-036). This work was partly supported by the Energy Efficiency & Resources Core Technology Program of the KETEP granted financial resource from the Ministry of Trade, Industry & Energy (20132020000260).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Kyu Han or Yun Suk Huh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, YK., Lee, K., Yoo, J. et al. Virtual screening of borate derivatives as high-performance additives in lithium-ion batteries. Theor Chem Acc 133, 1562 (2014). https://doi.org/10.1007/s00214-014-1562-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1562-x

Keywords

Navigation