Skip to main content
Log in

A DFT + Umol model study of the self-interaction error in standard density functional calculations of Ni(CO) m (m = 1–4)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The trend in the first ligand dissociation energies of the subcarbonyl and carbonyl complexes Ni(CO) m , m = 1–4, is a typical example for consequences of the self-interaction error in calculations using semi-local density functional approximations. The self-interaction effects on bond lengths and ligand dissociation energies are examined with the DFT + Umol approach, an extension of the DFT + U method to molecular orbitals. A detailed analysis shows that (1) the Ni 3d subshell is most affected by self-interaction and (2) the +Umol correction on the CO 2π* orbitals has no major positive effect on the nickel carbonyl complexes, at variance with similar models for the CO adsorption on surfaces of transition metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dyson PJ, McIndoe JS (2000) Transition metal carbonyl cluster chemistry, vol 2. Advanced chemistry texts. OPA, Amsterdam

    Google Scholar 

  2. Elschenbroich C (2006) Organometallics. Wiley VCH, Weinheim

    Google Scholar 

  3. Macchia P, Sironi A (2003) Coord Chem Rev 238–239:383–412

    Article  Google Scholar 

  4. Mond L, Langer C, Quincke F (1890) J Chem Soc Trans 57:749–753

    Article  CAS  Google Scholar 

  5. Blomberg M, Brandemark U, Siegbahn P, Wennerberg J, Bauschlicher CW Jr (1988) J Am Chem Soc 110:6650–6655

    Article  CAS  Google Scholar 

  6. Blomberg M, Siegbahn P, Lee TJ, Rendell AP, Rice JE (1991) J Chem Phys 95:5898–5905

    Article  CAS  Google Scholar 

  7. Xu X, Lü X, Wang N, Zhang Q, Ehara M, Nakatsuji H (1999) Int J Quantum Chem 72:221–231

    Article  CAS  Google Scholar 

  8. Chang C-R, Zhao Z-J, Köhler K, Genest A, Rösch N (2012) Catal Sci Tech 2:2238–2248

    Article  CAS  Google Scholar 

  9. Stammreich H, Kawai K, Sala O, Krumholz P (1961) J Chem Phys 35:2168–2174

    Article  CAS  Google Scholar 

  10. DeKock RL (1971) Inorg Chem 10:1205–1211

    Article  CAS  Google Scholar 

  11. Hedberg L, Ijima T, Hedberg K (1979) J Chem Phys 70:3224–3229

    Article  CAS  Google Scholar 

  12. Stevens AE, Feigerle CS, Lineberger WC (1982) J Am Chem Soc 104:5026–5031

    Article  CAS  Google Scholar 

  13. Sunderlin LS, Wang D, Squires RR (1992) J Am Chem Soc 114:2788–2796

    Article  CAS  Google Scholar 

  14. Manceron L, Alikhani ME (1999) Chem Phys 244:215–226

    Article  CAS  Google Scholar 

  15. Liang B, Zhou M, Andrews L (2000) J Phys Chem A 104:3905–3914

    Article  CAS  Google Scholar 

  16. Jansen HB, Ros P (1969) Chem Phys Lett 3:140–143

    Article  CAS  Google Scholar 

  17. Jörg H, Rösch N (1985) Chem Phys Lett 120:359–362

    Article  Google Scholar 

  18. Rösch N, Jörg H, Kotzian M (1987) J Chem Phys 86:4038–4045

    Article  Google Scholar 

  19. Chung S-C, Krüger S, Pacchioni G, Rösch N (1995) J Chem Phys 102:3695–3702

    Article  CAS  Google Scholar 

  20. Matveev A, Staufer M, Mayer M, Rösch N (1999) Int J Quantum Chem 75:863–873

    Article  CAS  Google Scholar 

  21. Wolters LP, Bickelhaupt FM (2013) ChemistryOpen 2:106–114

    Article  CAS  Google Scholar 

  22. Cohen AJ, Mori-Sánchez P, Yang W (2012) Chem Rev 112:289–320

    Article  CAS  Google Scholar 

  23. Janak JF (1978) Phys Rev B 18:7165–7168

    Article  CAS  Google Scholar 

  24. Perdew JP, Parr GR, Levy M, Balduz JLJ (1982) Phys Rev Lett 49:1691–1694

    Article  CAS  Google Scholar 

  25. Tsuneda T, Hirao K (2014) J Chem Phys 140:18A513

    Article  Google Scholar 

  26. Anisimov VI, Zaanen J, Andersen OK (1991) Phys Rev B 44:943–953

    Article  CAS  Google Scholar 

  27. Czyżyk MT, Sawatzky GA (1994) Phys Rev B 49:14211–14228

    Article  Google Scholar 

  28. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505–1509

    Article  CAS  Google Scholar 

  29. Picket WE, Erwin SC, Ethridge EC (1998) Phys Rev B 58:1201–1209

    Article  Google Scholar 

  30. Han MJ, Ozaki T, Yu J (2006) Phys Rev B 73:045110–045111

    Article  Google Scholar 

  31. Kulik HJ, Cococcioni M, Scherlis DA, Marzari N (2006) Phys Rev Lett 97:103001–103004

    Article  Google Scholar 

  32. O’Regan DD, Payne MC, Mostofi AA (2011) Phys Rev B 83:245124

    Article  Google Scholar 

  33. Cococcioni M, de Gironcoli S (2005) Phys Rev B 71:035105–035116

    Article  Google Scholar 

  34. Kresse G, Gil A, Sautet P (2003) Phys Rev B 68:073401–073404

    Article  Google Scholar 

  35. Rohrbach A, Hafner J, Kresse G (2004) Phys Rev B 69:075413

    Article  Google Scholar 

  36. Ramakrishnan R, Matveev A, Rösch N (2009) Chem Phys Lett 468:158–161

    Article  CAS  Google Scholar 

  37. Ramakrishnan R, Matveev AV, Rösch N (2011) Comput Theor Chem 963:337–343

    Article  CAS  Google Scholar 

  38. Ramakrishnan R, Matveev AV, Krüger S, Rösch N (2011) Theor Chem Acc 130:361–369

    Article  CAS  Google Scholar 

  39. Ramakrishnan R (2011) The DFT + U method in the framework of the parallel density functional code ParaGauss. Doctoral dissertation, Technische Universität München, München

  40. Soini TM, Krüger S, Rösch N (2014) J Chem Phys 140:174709

    Article  Google Scholar 

  41. Blyholder G (1964) J Phys Chem 68:2772–2777

    Article  CAS  Google Scholar 

  42. Belling T, Grauschopf T, Krüger S, Nörtemann F, Staufer M, Mayer M, Nasluzov VA, Birkenheuer U, Hu A, Matveev AV, Shor AV, Fuchs-Rohr MSK, Neyman KM, Ganyushin DI, Kerdcharoen T, Woiterski A, Majumder S, Gordienko AB, Huix i Rotllant M, Ramakrishnan R, Dixit G, Nikodem A, Soini TM, Roderus M, Rösch N (2012) ParaGauss, Version 4.0, Technische Universität München

  43. Dunlap BI, Rösch N, Trickey SB (2010) Mol Phys 108:3167–3180

    Article  CAS  Google Scholar 

  44. Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865–3868

  45. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  46. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  47. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  48. Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 240:283–290

    Article  CAS  Google Scholar 

  49. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119–124

    Article  CAS  Google Scholar 

  50. Becke AD (1988) J Chem Phys 88:2547–2553

    Article  CAS  Google Scholar 

  51. Lebedev VI (1975) Zh vychisl Mat mat Fiz 15:48–54

    Google Scholar 

  52. Lebedev VI (1976) Zh vychisl Mat mat Fiz 16:293–306

    Google Scholar 

  53. Savin A (1996) On degeneracy, near-degeneracy and density functional theory. In: Seminario JM (ed) Recent Developments and Applications of Modern Density Functional Theory, vol 4., Theoretical and computational chemistry. Elsevier, Amsterdam, pp 327–357

    Chapter  Google Scholar 

  54. Warren KD (1973) J Phys Chem 77:1681–1686

    Article  CAS  Google Scholar 

  55. Pulay P (1980) Chem Phys Lett 73:393–398

    Article  CAS  Google Scholar 

  56. Nikodem A (2013) ParaGauss and ParaTools—transition state search and efficient parallelization for density functional calculations. Doctoral dissertation, Technische Universität München, München

  57. Fletcher R (1987) Practical methods of optimization, 2nd edn. Wiley, New York

    Google Scholar 

  58. Nikodem A, Matveev AV, Chaffey-Millar H, Soini TM, Rösch N (2012) ParaTools, Version 2.0, Technische Universität München

  59. Anisimov VI, Solovyev IV, Korotin MA, Czyzyk MT, Sawatzky GA (1993) Phys Rev B 48:16929–16934

    Article  CAS  Google Scholar 

  60. Huber KP, Herzberg G (1979) Constants of diatomic molecules. Van Nostrand-Reinhold, New York

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Sven Krüger and Dr. Alexander Genest for numerous discussions. TMS is grateful for support by the International Graduate School of Science and Engineering (IGSSE) of Technische Universität München.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Notker Rösch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soini, T.M., Rösch, N. A DFT + Umol model study of the self-interaction error in standard density functional calculations of Ni(CO) m (m = 1–4). Theor Chem Acc 133, 1561 (2014). https://doi.org/10.1007/s00214-014-1561-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1561-y

Keywords

Navigation