Theoretical Chemistry Accounts

, 133:1555 | Cite as

A comparison study of the H + CH4 and H + SiH4 reactions with eight-dimensional quantum dynamics: normal mode versus local mode in the reactant molecule vibration

Regular Article
Part of the following topical collections:
  1. Yan Festschrift Collection

Abstract

While molecular vibration of CH4 is well described by the normal-mode paradigm, the local mode picture is more suitable for understanding the SiH4 stretching vibrational motion. To compare the roles of the two types of molecular vibration in reaction dynamics, the H + CH4 → H2 + CH3 and H + SiH4 → H2 + SiH3 reactions have been investigated using an eight-dimensional (8D) quantum dynamics method in which the nonreacting XH3 (X = C, Si) group keeps its C3v symmetry in the reaction. The reaction probabilities, integral cross sections and thermal rate constants in the temperature range of 200–2,000 K were calculated for both reactions. Strong mode specificity was found in both reactions, and the differences were rationalized by the vibrational characteristics of the CH4 and SiH4 reactants.

Keywords

Quantum dynamics H + CH4 H + SiH4 Normal mode Local mode 

References

  1. 1.
    Polanyi JC (1972) Acc Chem Res 5:161CrossRefGoogle Scholar
  2. 2.
    Zhang WQ, Zhou Y, Wu GR, Lu YP, Pan HL, Fu BN, Shuai QA, Liu L, Liu S, Zhang LL, Jiang B, Dai DX, Lee SY, Xie Z, Braams BJ, Bowman JM, Collins MA, Zhang DH, Yang XM (2010) Proc Natl Acad Sci USA 107:12782CrossRefGoogle Scholar
  3. 3.
    Zhang WQ, Kawamata H, Liu KP (2009) Science 325:303CrossRefGoogle Scholar
  4. 4.
    Wang FY, Liu KP (2010) Chem Sci 1:126CrossRefGoogle Scholar
  5. 5.
    Wang FY, Lin JS, Liu KP (2011) Science 331:900CrossRefGoogle Scholar
  6. 6.
    Lin JJ, Zhou JG, Shiu WC, Liu KP (2003) Science 300:966CrossRefGoogle Scholar
  7. 7.
    Zhang ZJ, Zhou Y, Zhang DH, Czako G, Bowman JM (2012) J Phys Chem Lett 3:3416CrossRefGoogle Scholar
  8. 8.
    Jiang B, Liu R, Li J, Xie DQ, Yang MH, Guo H (2013) Chem Sci 4:3249CrossRefGoogle Scholar
  9. 9.
    Liu R, Yang MH, Czako G, Bowman JM, Li J, Guo H (2012) J Phys Chem Lett 3:3776CrossRefGoogle Scholar
  10. 10.
    Czako G, Bowman JM (2011) Science 334:343CrossRefGoogle Scholar
  11. 11.
    Duncan WT, Truong TN (1995) J Chem Phys 103:9642CrossRefGoogle Scholar
  12. 12.
    Yoon S, Holiday RJ, Sibert EL III, Crim FF (2003) J Chem Phys 119:9568CrossRefGoogle Scholar
  13. 13.
    Yan S, Wu Y-T, Liu K (2008) Proc Natl Acad Sci USA 105:12667CrossRefGoogle Scholar
  14. 14.
    Jiang B, Guo H (2013) J Chem Phys 138:234104CrossRefGoogle Scholar
  15. 15.
    Jiang B, Guo H (2013) J Am Chem Soc 135:15251CrossRefGoogle Scholar
  16. 16.
    Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations. Dover, New YorkGoogle Scholar
  17. 17.
    Ma GB, Guo H (1999) J Chem Phys 111:4032CrossRefGoogle Scholar
  18. 18.
    Palma J, Echave J, Clary DC (2002) J Phys Chem A 106:8256CrossRefGoogle Scholar
  19. 19.
    Liu R, Xiong HW, Yang MH (2012) J Chem Phys 137:174113CrossRefGoogle Scholar
  20. 20.
    Yang MH, Zhang DH, Lee SY (2002) J Chem Phys 117:9539CrossRefGoogle Scholar
  21. 21.
    Halonen L, Carrington T (1988) J Chem Phys 88:4171CrossRefGoogle Scholar
  22. 22.
    Halonen L (1998) Adv Chem Phys 104:41Google Scholar
  23. 23.
    Halonen L, Child MS (1983) J Chem Phys 79:4355CrossRefGoogle Scholar
  24. 24.
    Halonen L, Noid DW, Child MS (1983) J Chem Phys 78:2803CrossRefGoogle Scholar
  25. 25.
    Zhu QS, Zhang BS, Ma YR, Qian HB (1989) Chem Phys Lett 164:596CrossRefGoogle Scholar
  26. 26.
    Zhu QS, Zhang BS, Ma YR, Qian HB (1990) Spectrochim Acta A 46:1217CrossRefGoogle Scholar
  27. 27.
    Camden JP, Bechtel HA, Brown DJA, Zare RN (2005) J Chem Phys 123:134301CrossRefGoogle Scholar
  28. 28.
    Camden JP, Hu WF, Bechtel HA, Brown DJA, Martin MR, Zare RN, Lendvay G, Troya D, Schatz GC (2006) J Phys Chem A 110:677CrossRefGoogle Scholar
  29. 29.
    Liu S, Chen J, Zhang ZJ, Zhang DH (2013) J Chem Phys 138:011101CrossRefGoogle Scholar
  30. 30.
    Welsch R, Manthe U (2012) J Chem Phys 137:244106CrossRefGoogle Scholar
  31. 31.
    Schiffel G, Manthe U (2010) J Chem Phys 133:174124CrossRefGoogle Scholar
  32. 32.
    Zhang LL, Lu YP, Lee SY, Zhang DH (2007) J Chem Phys 127(23):4313CrossRefGoogle Scholar
  33. 33.
    Yang MH, Lee SY, Zhang DH (2007) J Chem Phys 126:064303CrossRefGoogle Scholar
  34. 34.
    Kerkeni B, Clary DC (2004) J Chem Phys 120:2308CrossRefGoogle Scholar
  35. 35.
    Zhang X, Yang GH, Han KL, Wang ML, Zhang JZH (2003) J Chem Phys 118:9266CrossRefGoogle Scholar
  36. 36.
    Wang DY, Bowman JM (2001) J Chem Phys 115:2055CrossRefGoogle Scholar
  37. 37.
    Yu HG, Nyman G (1999) J Chem Phys 111:3508CrossRefGoogle Scholar
  38. 38.
    Takayanagi T (1996) J Chem Phys 104:2237CrossRefGoogle Scholar
  39. 39.
    Palma J, Clary DC (2000) J Chem Phys 112:1859CrossRefGoogle Scholar
  40. 40.
    Shen GL, Yang XM, Shu JN, Yang CH, Lee YT (2006) J Chem Phys 125:133103CrossRefGoogle Scholar
  41. 41.
    Zhang WQ, Wu GR (2009) Pan, H. L. Q. Shuai, B. Jiang, D. X. Dai and X. M. Yang. J Phys Chem A 113:4652CrossRefGoogle Scholar
  42. 42.
    Wu GR, Zhang WQ, Pan HL, Shuai QA, Yang JY, Jiang B, Dai DX, Yang XM (2010) Phys Chem Chem Phys 12:9469CrossRefGoogle Scholar
  43. 43.
    Xiao CF, Shen GL, Wang XY, Yang XM (2011) Chin J Chem Phys 24:4CrossRefGoogle Scholar
  44. 44.
    Espinosa-Garcia J, Sanson J, Corchado JC (1998) J Chem Phys 109:466CrossRefGoogle Scholar
  45. 45.
    Wang WJ, Feng SL, Zhao Y (2007) J Chem Phys 126:114307CrossRefGoogle Scholar
  46. 46.
    Wang MH, Sun XM, Bian WS, Cai ZT (2006) J Chem Phys 124:234311CrossRefGoogle Scholar
  47. 47.
    Wang MH, Sun XM, Bian WS (2008) J Chem Phys 129:084309CrossRefGoogle Scholar
  48. 48.
    Cao JW, Zhang ZJ, Zhang CF, Liu K, Wang MH, Bian WS (2009) Proc Natl Acad Sci USA 106:13180CrossRefGoogle Scholar
  49. 49.
    Cao JW, Zhang ZJ, Zhang CF, Bian WS, Guo Y (2011) J Chem Phys 134:024315CrossRefGoogle Scholar
  50. 50.
    Espinosa-Garcia J (2002) J Chem Phys 116:10664CrossRefGoogle Scholar
  51. 51.
    Jordan MJT, Gilbert RG (1995) J Chem Phys 102:5669CrossRefGoogle Scholar
  52. 52.
    Zhao Y, Yamamoto T, Miller WH (2004) J Chem Phys 120:3100CrossRefGoogle Scholar
  53. 53.
    Espinosa-Garcia J (2008) Phys Chem Chem Phys 10:1277CrossRefGoogle Scholar
  54. 54.
    Xie Z, Braams BJ, Bowman JM (2005) J Chem Phys 122:224307CrossRefGoogle Scholar
  55. 55.
    Zhou Y, Fu BN, Wang CR, Collins MA, Zhang DH (2011) J Chem Phys 134:064323CrossRefGoogle Scholar
  56. 56.
    Palma J, Clary DC (2000) Phys Chem Chem Phys 2:4105CrossRefGoogle Scholar
  57. 57.
    Zare RN (1988) Angular momentum. Wiley, New YorkGoogle Scholar
  58. 58.
    Miller WH, Handy NC, Adams JE (1980) J Chem Phys 72:99CrossRefGoogle Scholar
  59. 59.
    Corchado JC, Chuang Y–Y, Fast PL, Hu W-P, Liu Y-P, Lynch GC, Nguyen KA, Jackels CF, Fernandez Ramos A, Ellingson BA, Lynch BJ, Zheng J, Melissas VS, Villà J, Rossi I, Coitiño EL, Pu J, Albu TV, Steckler R, Garrett BC, Isaacson AD, Truhlar DG (2007) Polyrate, version 9.7, University of Minnesota, MinneapolisGoogle Scholar
  60. 60.
    Page M, McIver JW (1988) J Chem Phys 88:922CrossRefGoogle Scholar
  61. 61.
    Zhang DH, Collins MA, Lee SY (2000) Science 290:961CrossRefGoogle Scholar
  62. 62.
    Gray DL, Robiette AG (1979) Mol Phys 37:1901CrossRefGoogle Scholar
  63. 63.
    Lide DR (1998) CRC handbook of chemistry and physics, 79th edn. CRC, New YorkGoogle Scholar
  64. 64.
    Palma J, Clary DC (2001) J Chem Phys 115:2188CrossRefGoogle Scholar
  65. 65.
    Pack RT (1974) J Chem Phys 60:633CrossRefGoogle Scholar
  66. 66.
    McGuire P, Kouri DJ (1974) J Chem Phys 60:2488CrossRefGoogle Scholar
  67. 67.
    Kurylo MJ, Timmons RB (1969) J Chem Phys 50:5076CrossRefGoogle Scholar
  68. 68.
    Baulch DL, Cobos CJ, Cox RA, Esser C, Frank P, Just T, Kerr JA, Pilling MJ, Troe J, Walker RW, Warnatz J (1992) J Phys Chem Ref Data 21:411CrossRefGoogle Scholar
  69. 69.
    Sutherland JW, Su MC, Michael JV (2001) Int J Chem Kinet 33:669CrossRefGoogle Scholar
  70. 70.
    Goumri A, Yuan WJ, Ding LY, Shi YC, Marshall P (1993) Chem Phys 177:233CrossRefGoogle Scholar
  71. 71.
    Arthur NL, Miles LA (1997) J Chem Soc, Faraday Trans 93:4259CrossRefGoogle Scholar
  72. 72.
    Zhou Y, Wang CR, Zhang DH (2011) J Chem Phys 135:024313CrossRefGoogle Scholar
  73. 73.
    Wang FY, Lin JS, Cheng Y, Liu KP (2013) J Phys Chem Lett 4:323CrossRefGoogle Scholar
  74. 74.
    Jiang B, Guo H (in press) J Chin Chem Soc. doi:10.1002/jccs.201400158

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanPeople’s Republic of China
  2. 2.School of Chemical and Environmental EngineeringHubei University for NationalitiesEnshiPeople’s Republic of China
  3. 3.Department of Chemistry and Chemical BiologyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations