Skip to main content
Log in

Coriolis coupling effect of state-to-state quantum dynamics for He + HeH+

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

To study the Coriolis coupling (CC) effect on the proton transfer reaction He + HeH+ → HeH+ + He on a state-to-state level, a time-dependent quantum wave packet approach is performed based on a new potential energy surface constructed by Liang et al. The CC and centrifugal sudden (CS) approximation state-to-state integral cross section and thermal rate constants are obtained for the first time. The total and the state-to-state differential cross sections (DCSs) are calculated over a collision energy range of 0.01–0.4 eV. Comparisons between the CC and CS results reveal that the CC effect significantly influences the title reaction and that neglecting the CC effect lowers the cross sections and thermal rate constant. The CC effect significantly influences the DCSs, especially at higher product rotational quantum numbers. For the v′ = 0 product states, neglecting the CC effect leads to a much larger relative error in the calculated DCSs than in the v′ = 1 case. Reactant vibrational excitations have more effect in promoting reactivity than the rotational excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xu WW, Zhang PY (2013) J Phys Chem A 117:1406–1412

    Article  CAS  Google Scholar 

  2. Zhang JZH, Dai JQ, Zhu W (1997) J Phys Chem A 101:2746–2754

    Article  CAS  Google Scholar 

  3. Zhang JZH (1999) Theory and application of quantum molecular dynamics. World Scientific, Singapore

    Google Scholar 

  4. Meijer AJHM, Goldfield EM (2001) Phys Chem Chem Phys 3:2811–2818

    Article  CAS  Google Scholar 

  5. Xie TX, Zhang Y, Zhao MY, Han KL (2003) Phys Chem Chem Phys 5:2034–2038

    Article  CAS  Google Scholar 

  6. Zhang Y, Xie TX, Han KL, Zhang JZH (2003) J Chem Phys 119:12921–12925

    Article  CAS  Google Scholar 

  7. González-Lezana T, Aguado A, Paniagua M, Roncero O (2005) J Chem Phys 123:194309/1–194309/13

    Article  Google Scholar 

  8. Chu TS, Lu RF, Han KL, Tang XN, Xu HF, Ng CY (2005) J Chem Phys 122:244322/1–244322/8

    CAS  Google Scholar 

  9. Chu TS, Han KL (2005) J Phys Chem A 109:2050–2056

    Article  CAS  Google Scholar 

  10. Padmanaban R, Mahapatra S (2006) J Phys Chem A 110:6039–6046

    Article  CAS  Google Scholar 

  11. González-Lezana T, Roncero O, Honvault P, Launay JM, Bulut N, Aoiz FJ, Bañares L (2006) J Chem Phys 125:094314/1–094314/13

    Article  Google Scholar 

  12. Yao L, Ju LP, Chu TS, Han KL (2006) Phys Rev A 74:062715/1–062715/5

    Article  CAS  Google Scholar 

  13. Chu TS, Zhang Y, Han KL (2006) Int Rev Phys Chem 25:201–235

    Article  CAS  Google Scholar 

  14. Defazio P, Petrongolo C (2007) J Chem Phys 127:204311/1–204311/4

    Article  CAS  Google Scholar 

  15. Chu TS, Han KL, Hankel M, Balint-Kurti GG (2007) J Chem Phys 126:214303/1–214303/9

    CAS  Google Scholar 

  16. Chu TS, Han KL (2008) Phys Chem Chem Phys 10:2431–2441

    Article  CAS  Google Scholar 

  17. Defazio P, Petrongolo C (2009) J Phys Chem A 113:4208–4212

    Article  CAS  Google Scholar 

  18. Ju LP, Han KL, Zhang JZH (2009) J Comput Chem 30:305–316

    Article  CAS  Google Scholar 

  19. Tiwari AK, Kolakkandy S, Sathyamurthy N (2009) J Phys Chem A 113:9568–9574

    Article  CAS  Google Scholar 

  20. Zanchet A, Roncero O, González-Lezana T, Rodríguez-López A, Aguado A, Sanz-Sanz C, Gómez-Carrasco S (2009) J Phys Chem A 113:14488–14501

    Article  CAS  Google Scholar 

  21. Wu EL (2010) J Comput Chem 31:2827–2835

    Article  CAS  Google Scholar 

  22. Hankel M (2011) Phys Chem Chem Phys 13:7948–7960

    Article  CAS  Google Scholar 

  23. Defazio P, Gamallo P, Petrongolo C (2012) J Chem Phys 136:054308/1–054308/6

    Article  CAS  Google Scholar 

  24. Chu TS, Han KL (2012) Annu Rep Prog Chem Sect C Phys Chem 108:10–33

    Article  CAS  Google Scholar 

  25. Xu WW, Li WW, Lv SJ, Zhai HS, Duan ZX, Zhang PY (2012) J Phys Chem A 116:10882–10888

    Article  CAS  Google Scholar 

  26. Yao CX, Zhang PY, Duan ZX, Zhao GJ (2014) Theo Chem Acc 133:1489/1–1489/8

    Google Scholar 

  27. Bhattacharya S, Panda AN (2009) J Phys B At Mol Opt Phys 42:085201/1–085201/8

    Article  CAS  Google Scholar 

  28. Liang JJ, Yang CL, Wang LZ, Zhang QG (2012) J Chem Phys 136:0943071–0943075

    Article  Google Scholar 

  29. Reagan PN, Browne JC, Matsen FA (1963) Phys Rev 132:304–307

    Article  CAS  Google Scholar 

  30. Poshusta RD, Haugen JA, Zetik DF (1969) J Chem Phys 51:3343–3351

    Article  CAS  Google Scholar 

  31. Adams NG, Bohme DK, Ferguson EE (1970) J Chem Phys 52:5101–5105

    Article  CAS  Google Scholar 

  32. Poshusta RD, Siems WF (1971) J Chem Phys 55:1995–1996

    Article  CAS  Google Scholar 

  33. Roothaan CCJ (1951) J Chem Phys 19:1445–1458

    Article  CAS  Google Scholar 

  34. Milleur MB, Matcha RL, Hayes EF (1974) J Chem Phys 60:674–679

    Article  CAS  Google Scholar 

  35. Bondybey VE, Pimentel GC (1972) J Chem Phys 56:3832–3836

    Article  CAS  Google Scholar 

  36. Dykstra CE (1983) J Mol Struct 103:131–138

    Article  Google Scholar 

  37. Lee JS, Secrest D (1986) J Chem Phys 85:6565–6575

    Article  CAS  Google Scholar 

  38. Baccarelli I, Gianturco FA, Schneider F (1997) J Phys Chem A 101:6054–6062

    Article  CAS  Google Scholar 

  39. Kim ST, Lee JS (1999) J Chem Phys 110:4413–4418

    Article  CAS  Google Scholar 

  40. Filippone F, Gianturco FA (1998) Europhys Lett 44:585–591

    Article  CAS  Google Scholar 

  41. Panda AN, Sathyamurthy N (2003) J Phys Chem A 103:7125–7131

    Article  Google Scholar 

  42. Aguado A, Tablero C, Paniagua M (1998) Comput Phys Commun 108:259–266

    Article  CAS  Google Scholar 

  43. Murrell JN, Carter S (1984) J Phys Chem 88:4887–4891

    Article  CAS  Google Scholar 

  44. Aguado A, Paniagua M (1992) J Chem Phys 96:1265–1275

    Article  CAS  Google Scholar 

  45. See http://people.sc.fsu.edu/~burkardt/f_src/nl2sol/nl2sol.html for information about the non-linear least square fitting method

  46. Sun ZG, Lin X, Lee SY, Zhang DH (2009) J Phys Chem A 113:4145–4154

    Article  CAS  Google Scholar 

  47. Sun ZG, Lee SY, Guo H, Zhang DH (2009) J Chem Phys 130:1741021–17410211

    Google Scholar 

  48. Sun ZG, Guo H, Zhang DH (2010) J Chem Phys 132:084112/1–084112/11

    CAS  Google Scholar 

  49. Song HW, Lee SY, Sun ZG, Lu YP (2013) J Chem Phys 138:0543051–05430512

    Google Scholar 

  50. Fleck JA Jr, Morris JR, Feit MD (1976) Appl Phys 10:129–160

    Article  Google Scholar 

  51. Mowrey RC (1991) J Chem Phys 94:7098–7105

    Article  CAS  Google Scholar 

  52. Light JC, Hamilton IP, Lill JV (1985) J Chem Phys 82:1400–1409

    Article  CAS  Google Scholar 

  53. Lin SY, Guo H (2006) Phys Rev A 74:022703/1–022703/8

    CAS  Google Scholar 

  54. Gómez-Carrasco S, Roncero O (2006) J Chem Phys 125:0541021–05410214

    Google Scholar 

  55. Zhang DH, Zhang JZH (1994) J Chem Phys 101:3671–3678

    Article  CAS  Google Scholar 

  56. Huarte-Larrañaga F, Manthe U (2003) J Chem Phys 118:8261–8267

    Article  Google Scholar 

  57. Lin SY, Sun Z, Guo H, Zhang DH, Honvault P, Xie D, Lee S-Y (2008) J Phys Chem A 112:602–611

    Article  CAS  Google Scholar 

  58. Gamallo P, Defazio P, González M (2011) J Phys Chem A 115:11525–11530

    Article  CAS  Google Scholar 

  59. Mahapatra S, Sathyamurthy N (1997) J Chem Phys 107:6621–6626

    Article  CAS  Google Scholar 

  60. Hu M, Xu WW, Liu XG, Tan RS, Li HG (2013) J Chem Phys 138:1743051–1743058

    Google Scholar 

  61. Wu D, Wang Y, Guo MX, Yin SH, Gao H, Li L, Che L (2014) Comput Theo Chem 1032:56–64

    Article  CAS  Google Scholar 

  62. Pomerantz AE, Camden JP, Chiou AS, Ausfelder F, Chawla N, Hase WL, Zare RN (2005) J Am Chem Soc 127:16368–16369

    Article  CAS  Google Scholar 

  63. Lv SJ, Zhang PY, Han KL, Guo ZH (2010) J Chem Phys 132:014303/1–014303/7

    CAS  Google Scholar 

  64. Hankel M, Smith SC, Allan RJ, Gray SK, Balint-Kurti GG (2006) J Chem Phys 125:164303/1–164303/12

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (Grant Nos. 11204022 and 21203016), the Fundamental Research Funds for the Central Universities (Grant Nos. 3132013108, 3132014337), and the China Scholarship Project. The authors acknowledge Prof C.L. Yang for providing the potential energy surface.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuhui Yin, Zhigang Sun or Mark R. Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Guo, M., Wang, Y. et al. Coriolis coupling effect of state-to-state quantum dynamics for He + HeH+ . Theor Chem Acc 133, 1552 (2014). https://doi.org/10.1007/s00214-014-1552-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1552-z

Keywords

Navigation