Skip to main content
Log in

Quantum Monte Carlo investigation of the H-shift and O2-loss channels of cis-2-butene-1-peroxy radical

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Owing to importance in combustion processes, O2-loss and 1, 6-H-shift in cis-2-butene-1-peroxy radical have been investigated. Energies for these processes and the barrier height of the latter are computed using the diffusion Monte Carlo (DMC) method. The DMC energy for the 1, 6-H-shift was determined to be 4.56 ± 0.19 kcal/mol with barrier height of 26.79 ± 0.20 kcal/mol. The energy for O2-loss was found to be 14.93 ± 0.24 kcal/mol. Quantitative differences between the findings of the present study and previous CBS-QB3 results indicate a discrepancy between high-level methods for the resonance-stabilized radicals. Further study is needed to identify the origin of these differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Firestone D (ed) (2006) Physical and chemical characteristics of oils, fats, and waxes, 2nd edn. American Oil Chemists Society, Urbana

    Google Scholar 

  2. Buda F, Bounaceur R, Warth V, Glaude PA, Fournet R, Battin-Leclerc F (2005) Combust Flame 142:170–186

    Article  CAS  Google Scholar 

  3. Hayes CJ, Merle JK, Hadad CM (2009) Adv Phys Org Chem 43:79–134

    CAS  Google Scholar 

  4. Pilling MJ (ed) (1997) Low-temperature combustion and autoignition. Elsevier, Amsterdam

    Google Scholar 

  5. Battin-Leclerc F, Herbinet O, Glaude P, Fournet R, Zhou Z, Deng L, Guo H, Xie M, Qi F (2010) Angew Chem Int Ed 49:3169–3172

    Article  CAS  Google Scholar 

  6. Zádor J, Taatjes CA, Fernandes RX (2011) Prog Energy Combust Sci 37:371–421

    Article  Google Scholar 

  7. Lee J, Bozzelli JW (2005) Proc Combust Inst 30:1015–1022

    Article  Google Scholar 

  8. Dibble TS, Sha Y, Thornton WF, Zhang F (2012) J Phys Chem A 116:7603–7614

    Article  CAS  Google Scholar 

  9. Wang J, Domin D, Austin B, Zubarev DY, McClean J, Frenklach M, Cui T, Lester WA Jr (2010) J Phys Chem A 114:9832–9835

    Article  CAS  Google Scholar 

  10. Anderson JB (1975) J Chem Phys 63:1499–1503

    Article  CAS  Google Scholar 

  11. Hammond BL, Lester WA Jr, Reynolds PJ (1994) Monte Carlo methods in ab initio quantum chemistry: quantum Monte Carlo for molecules. World Scientific, Singapore

    Google Scholar 

  12. Foulkes WMC, Mitas L, Needs RJ, Rajagopal G (2001) Rev Mod Phys 73:33–83

    Article  CAS  Google Scholar 

  13. Boys SF, Handy NC (1969) Proc R Soc London Ser A 310:63–78

    Article  CAS  Google Scholar 

  14. Schmidt KE, Moskowitz JW (1990) J Chem Phys 93:4172–4178

    Article  CAS  Google Scholar 

  15. Umrigar CJ, Toulouse J, Filippi C, Sorella S, Henning RG (2007) Phys Rev Lett 98:110201

    Article  CAS  Google Scholar 

  16. Toulouse J, Umrigar CJ (2007) J Chem Phys 126:084102

    Article  Google Scholar 

  17. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JJA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  18. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  19. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  20. Burkatzki M, Filippi C, Dolg M (2007) J Chem Phys 126:234105

    Article  CAS  Google Scholar 

  21. Umrigar CJ, Nightingale MP, Runge KJ (1993) J Chem Phys 99:2865–2890

    Article  CAS  Google Scholar 

  22. Reynolds PJ, Ceperley DM, Alder B, Lester WA Jr (1982) J Chem Phys 77:5593–5603

    Article  CAS  Google Scholar 

  23. Aspuru-Guzik A, Salomon-Ferrer R, Austin B, Perusquia-Flores R, Griffin M, Oliva RA, Skinner D, Domin D, Lester WA Jr (2005) J Comput Chem 26:856–862

    Article  CAS  Google Scholar 

  24. Grossman JC (2002) J Chem Phys 117:1434–1440

    Article  CAS  Google Scholar 

  25. Petruzielo FR, Toulouse J, Umrigar CJ (2012) J Chem Phys 136:124116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

W.A.L. was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division of the US Department of Energy, under Contract No. DE-AC03-76F00098. This research used computational resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Lester Jr..

Additional information

Dedicated to Professor Thom Dunning and published as part of the special collection of articles celebrating his career upon his retirement.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2670 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zubarev, D.Y. & Lester, W.A. Quantum Monte Carlo investigation of the H-shift and O2-loss channels of cis-2-butene-1-peroxy radical. Theor Chem Acc 133, 1541 (2014). https://doi.org/10.1007/s00214-014-1541-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1541-2

Keywords

Navigation