Skip to main content
Log in

A new ab initio potential energy surface and infrared spectra for the He–CS2 complex

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We report a new three-dimensional potential energy surface for the He–CS2 complex including the Q 3 normal mode for the υ 3 antisymmetric stretching vibration of the CS2 molecule. The potential energies were calculated at the coupled-cluster singles and doubles with noniterative inclusion of connected triples level with augmented correlation-consistent quadruple-zeta basis set plus midpoint bond functions. Two vibrationally averaged potentials with CS2 at both the ground (υ = 0) and the first excited (υ = 1) υ 3 vibrational states were generated from the integration of the three-dimensional potential over the Q 3 coordinate. Both potentials have a T-shaped global minimum and two equivalent linear local minima. The radial discrete variable representation/angular finite basis representation method and the Lanczos algorithm were applied to calculate the rovibrational energy levels. Our calculated results show that the two potentials support eight vibrational bound states. The calculated band origin shift of the complex (0.1759 cm−1) agrees very well with the observed one (0.1709 cm−1). The predicted infrared spectra and spectroscopic constants based on the two averaged potentials are in excellent agreement with the available experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Steed JM, Dixion TA, Klemperer W (1979) J Chem Phys 70:4095

    Article  CAS  Google Scholar 

  2. Randall RW, Walsh MA, Howard BJ (1988) Faraday Discuss Chem Soc 85:13

    Article  CAS  Google Scholar 

  3. Fraser GT, Pine AS, Suenram RD (1988) J Chem Phys 88:6157

    Article  CAS  Google Scholar 

  4. Pine AS, Fraser GT (1988) J Chem Phys 89:100

    Article  CAS  Google Scholar 

  5. Iida M, Ohsbima Y, Endo Y (1993) J Phys Chem 97:357

    Article  CAS  Google Scholar 

  6. Weida MJ, Sperhac JM, Nesbitt DJ (1994) J Chem Phys 101:8351

    Article  CAS  Google Scholar 

  7. Xu YJ, Jäger W (1998) J Mol Spectrosc 192:435

    Article  CAS  Google Scholar 

  8. Konno T, Fukuda S, Ozaki Y (2006) Chem Phys Lett 421:421

    Article  CAS  Google Scholar 

  9. Parker GA, Keil M, Kuppermann A (1983) J Chem Phys 78:1145

    Article  CAS  Google Scholar 

  10. Keil M, Parker GA (1985) J Chem Phys 82:1947

    Article  CAS  Google Scholar 

  11. Beneventi L, Casavecchia P, Vecchiocattivi F, Volpi GG, Buck U, Lauenstein C, Schinke R (1988) J Chem Phys 89:4671

    Article  CAS  Google Scholar 

  12. Parker GA, Snow RL, Pack RT (1976) J Chem Phys 64:1668

    Article  CAS  Google Scholar 

  13. Roche CF, Ernesti A, Huston JM, Dickinson AS (1996) J Chem Phys 104:2156

    Article  CAS  Google Scholar 

  14. Marshall PJ, Szczesniak MM, Sadlej J, Chalasinski G, ter Horst MA, Jameson CJ (1996) J Chem Phys 104:6569

    Article  CAS  Google Scholar 

  15. Hutson JM, Ernesti AM, Law M, Roche CF, Wheatley RJ (1996) J Chem Phys 105:9130

    Article  CAS  Google Scholar 

  16. Yan GS, Yang MH, Xie DQ (1998) J Chem Phys 109:10284

    Article  CAS  Google Scholar 

  17. Negri F, Ancliotto F, Mistura G, Toigo F (1999) J Chem Phys 111:6439

    Article  CAS  Google Scholar 

  18. Ran H, Xie DQ (2008) J Chem Phys 128:124323

  19. Cui YL, Ran H, Xie DQ (2009) J Chem Phys 130:224311

  20. Chen R, Jiao EQ, Zhu H, Xie DQ (2010) J Chem Phys 133:104302

    Article  Google Scholar 

  21. Chen R, Zhu H (2012) J Theor Comput Chem 11:1175

    Article  CAS  Google Scholar 

  22. Chen R, Zhu H, Xie DQ (2011) Chem Phys Lett 511:229

    Article  CAS  Google Scholar 

  23. Chen M, Zhu H (2012) J Theor Comput Chem 11:537

    Article  CAS  Google Scholar 

  24. Flaud JM, Camy-Peyret C, Johns JWC (1983) Can J Phys 61:1462

    Article  CAS  Google Scholar 

  25. Chalasinski G, Szczesniak MM (2000) Chem Rev 100:4227

    Article  CAS  Google Scholar 

  26. Le Roy RJ, van Kranendonk J (1974) J Chem Phys 61:4750

    Article  Google Scholar 

  27. Tennyson J, Sutcliffe BT (1982) J Chem Phys 77:4061

    Article  CAS  Google Scholar 

  28. Le Roy RJ, Hutson JM (1987) J Chem Phys 86:837

    Article  Google Scholar 

  29. Moszynski R, Jeziorski B, Wormer PES, van der Avoird A (1994) Chem Phys Lett 221:161

    Article  CAS  Google Scholar 

  30. Pedersen TB, Cacheiro JL, Fernandez B, Koch H (2002) J Chem Phys 117:6562

    Article  Google Scholar 

  31. Jiang H, Xu MZ, Hutson JM, Bacic Z (2005) J Chem Phys 123:054305

    Article  Google Scholar 

  32. Paesani F, Whaley KB (2006) Mol Phys 104:61

    Article  CAS  Google Scholar 

  33. Jucks KW, Huang ZS, Dayton D, Miller RE, Lafferty WJ (1987) J Chem Phys 86:4341

    Article  CAS  Google Scholar 

  34. Peebles SA, Sun L, Kuczkowski RL (1999) J Chem Phys 110:6804

    Article  CAS  Google Scholar 

  35. Newby JJ, Serafin MM, Peebles RA, Peebles SA (2005) Phys Chem Chem Phys 7:487

    Article  CAS  Google Scholar 

  36. Mivehvar F, Lauzin C, McKellar ARW, Moazzen-Ahmadi N (2012) J Mol Spectrosc 281:24

    Article  CAS  Google Scholar 

  37. Farrokhpour H, Tozihi M (2013) Mol Phys 111:779

    Article  CAS  Google Scholar 

  38. Zang LM, Dai W, Zheng LM, Duan CX, Lu YP, Yang MH (2014) J Chem Phys 140:114310

    Article  Google Scholar 

  39. Echave J, Clary DC (1992) Chem Phys Lett 190:225

    Article  CAS  Google Scholar 

  40. Wei H, Carrington T (1992) J Chem Phys 97:3029

    Article  CAS  Google Scholar 

  41. Bowman JM, Gazdy B (1991) J Chem Phys 94:816

    Article  CAS  Google Scholar 

  42. Wells JS, Schneider M, Maki AG (1988) J Mol Spectrosc 132:422

    Article  CAS  Google Scholar 

  43. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    Article  CAS  Google Scholar 

  44. Woon DE, Dunning TH (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  45. Pedersen TB, Fernandez B, Koch H, Makarewicz J (2001) J Chem Phys 115:8431

    Article  CAS  Google Scholar 

  46. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  47. Patel K, Butler PR, Ellis AM, Wheeler MD (2003) J Chem Phys 119:909

    Article  CAS  Google Scholar 

  48. Werner HJ, Knowles PJ, Amos RD et al. (2000) MOLPRO, version 2000.1, a package of ab initio programs

  49. Le Roy RJ, Corey GC, Hutson JM (1982) Faraday Discuss Chem Soc 73:339

    Article  Google Scholar 

  50. Misquitta AJ, Bukowski R, Szalewicz K (2000) J Chem Phys 112:5308

    Article  CAS  Google Scholar 

  51. Murdachaew G, Misquitta AJ, Bukowski R, Szalewicz K (2001) J Chem Phys 114:764

    Article  CAS  Google Scholar 

  52. Akin-Ojo O, Bukowski R, Szalewicz K (2003) J Chem Phys 119:8379

    Article  CAS  Google Scholar 

  53. Zhou YZ, Xie DQ (2004) J Chem Phys 121:2630

    Article  CAS  Google Scholar 

  54. Tang KT, Toennies JP (1984) J Chem Phys 80:3726

    Article  CAS  Google Scholar 

  55. Tennyson J, Sutcliffe BT (1984) Mol Phys 51:887

    Article  CAS  Google Scholar 

  56. Miller S, Tennyson J (1988) J Mol Spectrosc 128:132530

    Article  Google Scholar 

  57. Lin SY, Guo H (2002) J Chem Phys 117:5183

    Article  CAS  Google Scholar 

  58. Chen RQ, Ma GB, Guo H (2000) Chem Phys Lett 320:567

    Article  CAS  Google Scholar 

  59. Colbert DT, Miller WH (1992) J Chem Phys 96:1982

    Article  CAS  Google Scholar 

  60. Lanczos C (1950) J Res Natl Bur Stand 45:255

    Article  Google Scholar 

  61. Guo H, Chen RQ, Xie DQ (2002) J Theor Comput Chem 1:173

    Article  CAS  Google Scholar 

  62. Watson JKG (1967) J Chem Phys 46:1935

    Article  CAS  Google Scholar 

  63. Xie DQ, Ran H, Zhou YZ (2007) Int Rev Phys Chem 26:487

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21373139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhu.

Additional information

Dedicated to Professor Guosen Yan and published as part of the special collection of articles celebrating his 85th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, T., Zhu, H. A new ab initio potential energy surface and infrared spectra for the He–CS2 complex. Theor Chem Acc 133, 1537 (2014). https://doi.org/10.1007/s00214-014-1537-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1537-y

Keywords

Navigation