Skip to main content
Log in

Transition between direct gap and indirect gap in two dimensional hydrogenated honeycomb Si x Ge1−x alloys

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Using first-principles calculations, we have explored the structural and electronic properties of fully hydrogenated honeycomb Si x Ge1−x H alloys. Finite band gaps are opened by hydrogenation for x in the whole range from 0 to 1, while their nature and values can be tuned by x. When x is <0.7, the band gap is direct (from Γ to Γ). And when x is ≥0.7, the gap turns into indirect (from Γ to M). For all the computed compositions, the two kinds of energy differences between valence band and conduction band, Γ–Γ and Γ–M, are described well by two polynomial functions of x. The smaller of the two functions gives a good prediction for the overall band gap at any x. The two curves cross at x = 0.7, leading to the change of band gap type. At PBE level, the values of band gap for different x spread from 1.09 to 2.29 eV. These findings give a new route to tune the electronic properties of these materials and may have potential applications in nanoscale optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Song X, Hu J, Zeng H (2013) J Mater Chem C 1:2952

    Article  CAS  Google Scholar 

  2. Santos EJG (2013) J Phys Chem C 117:6420

    Article  CAS  Google Scholar 

  3. Yan JA, Stein R, Schaefer DM, Wang XQ, Chou MY (2013) Phys Rev B 88:121403

    Article  Google Scholar 

  4. Wu IJ, Guo GY (2007) Phys Rev B 76:035343

    Article  Google Scholar 

  5. Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y (2012) Phys Rev Lett 108:245501

    Article  Google Scholar 

  6. Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K (2012) Nano Lett 12:3507

    Article  CAS  Google Scholar 

  7. Zheng F, Zhang C (2012) Nanoscale Res Lett 7:1

    Article  Google Scholar 

  8. Liu CC, Feng W, Yao Y (2011) Phys Rev Lett 107:076802

    Article  Google Scholar 

  9. Novoselov KSA, Geim AK, Morozov SV, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A (2005) Nature 438:197

    Article  CAS  Google Scholar 

  10. Lang DV, People R, Bean JC, Sergent AM (1985) Appl Phys Lett 47:1333

    Article  CAS  Google Scholar 

  11. Bean JC, Feldman LC, Fiory AT, Nakahara ST, Robinson IK (1984) J Vac Sci Technol A 2:436

    Article  CAS  Google Scholar 

  12. Padilha JE, Seixas L, Pontes RB, da Silva AJ, Fazzio A (2013) Phys Rev B 88:201106

    Article  Google Scholar 

  13. Drummond ND, Zolyomi V, Fal’Ko VI (2012) Phys Rev B 85:075423

    Article  Google Scholar 

  14. Pan L, Liu HJ, Wen YW, Tan XJ, Lv HY, Shi J, Tang XF (2012) Appl Surf Sci 258:10135

    Article  CAS  Google Scholar 

  15. Kaltsas D, Tsatsoulis T, Ziogos OG, Tsetseris L (2013) J Chem Phys 139:124709

    Article  CAS  Google Scholar 

  16. Houssa M, Pourtois G, Afanas’ev VV, Stesmans A (2010) Appl Phys Lett 96:082111

  17. Topsakal M, Ciraci S (2010) Phys Rev B 81:024107

    Article  Google Scholar 

  18. Min H, Sahu B, Banerjee SK, MacDonald AH (2007) Phys Rev B 75:155115

    Article  Google Scholar 

  19. Wei W, Dai Y, Huang B, Jacob T (2013) Phys Chem Chem Phys 15:8789

    Article  CAS  Google Scholar 

  20. Voon LCLY, Sandberg E, Aga RS, Farajian AA (2010) Appl Phys Lett 97:163114

    Article  Google Scholar 

  21. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  22. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  23. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys Condens Matter 14:2717

    Article  CAS  Google Scholar 

  24. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  25. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  26. Bellaiche L, Vanderbilt D (2000) Phys Rev B 61:7877

    Article  CAS  Google Scholar 

  27. Bechiri A, Benmakhlouf F, Bouarissa N (2003) Mater Chem Phys 77:507

    Article  CAS  Google Scholar 

  28. Winkler B, Pickard C, Milman V (2002) Chem Phys Lett 362:266

    Article  CAS  Google Scholar 

  29. Houssa M, Scalise E, Sankaran K, Pourtois, G, Afanas’ev VV, Stesmans A (2011) Appl Phys Lett 98:223107

  30. Wang XQ, Li HD, Wang JT (2012) Phys Chem Chem Phys 14:3031

    Article  CAS  Google Scholar 

  31. Gao H, Wang L, Zhao J, Ding F, Lu J (2011) J Phys Chem C 115:3236

    Article  CAS  Google Scholar 

  32. Zhang P, Li XD, Hu CH, Wu SQ, Zhu ZZ (2012) Phys Lett A376:1230

    Article  Google Scholar 

  33. Bianco E, Butler S, Jiang S, Restrepo OD, Windl W, Goldberger JE (2013) ACS Nano 7:4414

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Key Basic Research Program (Contract No. 2011CB921404), by NSFC (Contract Nos. 21121003, 91021004, 21233007, 21222304), by CAS (Contract Nos. XDB01020300, XDB10030402), and by USTCSCC, SCCAS, Tianjin, and Shanghai Supercomputer Centers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan-Feng Yuan or Jinlong Yang.

Additional information

Dedicated to Professor Guosen Yan and published as part of the special collection of articles celebrating his 85th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, N., Yuan, LF. & Yang, J. Transition between direct gap and indirect gap in two dimensional hydrogenated honeycomb Si x Ge1−x alloys. Theor Chem Acc 133, 1535 (2014). https://doi.org/10.1007/s00214-014-1535-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1535-0

Keywords

Navigation