Skip to main content
Log in

A semiclassical adiabatic calculation of state densities for molecules exhibiting torsion: application to hydrogen peroxide and its isotopomers

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A practical computational method is discussed for obtaining the rotational–vibrational molecular state densities of molecules with large amplitude torsional degrees of freedom (DoFs). This method goes beyond the traditional harmonic oscillator/rigid rotor or separable hindered rotor approximations in that it includes coupling between the torsion, the remaining vibrational modes, and the overall rotation. The method is based on the vibrationally adiabatic approximation whereby the torsional motion is assumed to be slow compared to the remaining vibrational DoFs although the nonseparability may be large. The torsional coordinate therefore parameterizes the rotational constants and the effective vibrational potential. A semiclassical method is then introduced to calculate the total state density in which the torsion is treated classically while the remaining coordinates are treated quantum mechanically. The method is also formulated for reactive problems in which the density of states is parameterized by a second large amplitude degree of freedom, the reaction coordinate. The performance of the method is assessed using the dissociation reaction of the hydrogen peroxide molecule and its isotopomers. It is found that the method performs well based on numerical tests. The torsional nonseparability is found to yield errors of factors of 2–3 in the statistical rate coefficient when compared with results of traditional separable models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Truhlar DG, Hase WL, Hynes JT (1983) J Phys Chem 87:2664

    Article  CAS  Google Scholar 

  2. McQuarrie DW (2000) Statistical mechanics. University Science Books, Sausalito

    Google Scholar 

  3. Marcus RA, Rice OK (1951) J Phys Colloid Chem 55:894

    Article  CAS  Google Scholar 

  4. Holbrook KA, Pilling MJ, Robertson ST (1996) Unimolecular reactions, 2nd edn. Wiley, New York

    Google Scholar 

  5. Beyer T, Swinehart DF (1973) Commun ACM 16:379

    Article  Google Scholar 

  6. Stein SE, Rabinovitch BS (1973) J Chem Phys 58:2438

    Article  CAS  Google Scholar 

  7. Pitzer KS, Gwinn WD (1942) J Chem Phys 10:428

    Article  CAS  Google Scholar 

  8. Ellingson BA, Lynch VA, Mielke SL, Truhlar DG (2006) J Chem Phys 125:084305

    Article  Google Scholar 

  9. Pfaendtner J, Yu X, Broadbelt LJ (2007) Theor Chem Acct 118:881

    Article  CAS  Google Scholar 

  10. Lin CY, Izgorodine EI, Coote ML (2008) J Phys Chem A 112:1956

    Article  CAS  Google Scholar 

  11. Kamarchik E, Jasper AW (2013) J Phys Chem Lett 4:2430

    Article  CAS  Google Scholar 

  12. Lynch VA, Mielke SL, Truhlar DG (2005) J Phys Chem A 109:10092

    Article  CAS  Google Scholar 

  13. Vansteenkiste P, Van Neck D, Van Speybroeck V, Waroquier M (2006) J Chem Phys 124:044314

    Article  CAS  Google Scholar 

  14. Sharma S, Raman S, Green WH (2010) J Phys Chem A 114:5689

    Article  CAS  Google Scholar 

  15. Reinisch G, Leyssale LM, Vignoles GL (2010) J Chem Phys 133:154112

    Article  Google Scholar 

  16. Wang WJ, Zhao Y (2012) J Chem Phys 137:214306

    Article  Google Scholar 

  17. Zheng J, Yu T, Papajak E, Alecue IM, Mielke SL, Truhlar DG (2011) Phys Chem Chem Phys 13:10885–10907

    Article  CAS  Google Scholar 

  18. Miller WH, Handy NC, Adams JE (1980) J Chem Phys 72:99

    Article  CAS  Google Scholar 

  19. Fehrensen B, Luckhaus D, Quack M (1999) Chem Phys Lett 300:312

    Article  CAS  Google Scholar 

  20. Carrington T, Miller WH (1984) J Chem Phys 81:3942

    Article  CAS  Google Scholar 

  21. Zhou DDY, Han KL, Zhang PY, Harding LB, Davis MJ, Skodje RT (2012) J Phys Chem A 116:2089

    Article  CAS  Google Scholar 

  22. Koput J, Carter S, Handy NC (1998) J Phys Chem A 102:6325

    Article  CAS  Google Scholar 

  23. Kuhn B, Rizzo TR, Luckhaus D, Quack M, Suhm MA (1999) J Chem Phys 111:2565

    Article  CAS  Google Scholar 

  24. Luckhaus D (2000) J Chem Phys 113:1329

    Article  CAS  Google Scholar 

  25. Uzer T, Hynes JT, Reinhardt WP (1985) Chem Phys Lett 117:600

    Article  CAS  Google Scholar 

  26. Getino C, Sumpter BG, Santamaria J, Ezra GS (1989) J Phys Chem 93:3877

    Article  CAS  Google Scholar 

  27. Guo Y, Thompson DL (2003) Chem Phys Lett 382:654

    Article  CAS  Google Scholar 

  28. Colbert DT, Sibert EL (1991) J Chem Phys 94:6519

    Article  CAS  Google Scholar 

  29. Troe J, Ushakov VG, Chem P (2008) Chem Phys 10:3915

    CAS  Google Scholar 

  30. Kramer ZC, Skodje RT (2014) In: Han KL, Chu T (eds) Reaction rate constant computations: theories and applications, chapter 6. Royal Society of Chemistry Publishing, p 133

  31. Wang CR, Zhang DH, Skodje RT (2012) J Chem Phys 136:164314

    Article  Google Scholar 

  32. Rizzo TR, Hayden CC, Crim FF (1984) J Chem Phys 81:4501

    Article  CAS  Google Scholar 

  33. Butler LJ, Ticich TM, Likar MD, Crim FF (1986) J Chem Phys 85:2331

    Article  CAS  Google Scholar 

  34. Ticich TM, Rizzo TR, Dubal H-R, Crim FF (1986) J Chem Phys 84:1508

    Article  CAS  Google Scholar 

  35. Crim FF (1990) Science 249:1387

    Article  CAS  Google Scholar 

  36. Luo X, Rieger PT, Perry DS, Rizzo TR (1988) J Chem Phys 89:4448

    Article  CAS  Google Scholar 

  37. Luo X, Rizzo TR (1991) J Chem Phys 94:889

    Article  CAS  Google Scholar 

  38. Luo X, Rizzo TR (1992) J Chem Phys 96:5659

    Article  CAS  Google Scholar 

  39. Kuhn B, Rizzo TR (2000) J Chem Phys 112:7461

    Article  CAS  Google Scholar 

  40. Kappel C, Luther K, Troe J (2002) Phys Chem Chem Phys 4:4392

    Article  CAS  Google Scholar 

  41. Flaud JM, Camy-Peyret C, Johns JWC, Carli B (1992) J. Chem. Phys. 91:1504

    Article  Google Scholar 

  42. Camy-Peyret C, Flaud JM, Johns JWC, Noel M (1992) J Mol Spectros 155:84

    Article  CAS  Google Scholar 

  43. Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations. Dover, New York

    Google Scholar 

  44. Skodje RT, Truhlar DG, Garrett BC (1981) J Phys Chem 85:3019

    Article  CAS  Google Scholar 

  45. Skodje RT, Garrett BC, Truhlar DG (1982) J Chem Phys 77:5955

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Chinese Academy of Sciences for support through the program for visiting professorships for senior international scientists. We also acknowledge support from the National Science Foundation and summer support from Argonne National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rex T. Skodje.

Additional information

Dedicated to Professor Greg Ezra and published as part of the special collection of articles celebrating his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kramer, Z.C., Skodje, R.T. A semiclassical adiabatic calculation of state densities for molecules exhibiting torsion: application to hydrogen peroxide and its isotopomers. Theor Chem Acc 133, 1530 (2014). https://doi.org/10.1007/s00214-014-1530-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1530-5

Keywords

Navigation