Skip to main content
Log in

The role of core–valence electron correlation in gallium halides: a comparison of composite methods

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The electronic structure and atomization energies of gas phase gallium halides (GaXn where X = F, Cl, Br, and I, and n = 1 … 3) are studied with highly accurate ab initio composite methods. Coupled cluster methodologies up to full hextuples (CCSDTQPH) are used to compute spectroscopic properties of GaF, which are compared with experiment and conventional levels of theory [such as complete basis set CCSD(T)]. An appropriate treatment of core–valence electron correlation is necessary to obtain reasonable geometries and atomization energies. More efficient composite methods such as the correlation consistent Composite Approach (ccCA, ccCA-TM, rp-ccCA) and the Gaussian-n methods [G3, G3(MP2), G4, G4(MP2)] are calibrated to explore application toward large GaXn-containing molecules relevant to catalysis. For the 12 GaXn compounds, ccCA-TM and rp-ccCA with Boys-localized molecular orbitals has a mean absolute deviation of 1.41 kcal mol−1 compared to complete basis set CCSD(T). However, the G3(MP2) method performs better for complexes with the lighter halides.

Graphical Abstract

Calibration of GaXn (X = F, Cl, Br, and I; n = 1–3) ab initio atomization energies is useful to improve prediction of ligand binding energies in novel gallium halide-containing catalysts. Inorganic and organometallic complexes with GaXn ligands are extremely difficult to synthesize and characterize. Therefore, rational design based on well-understood theory is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Swennenhuis BHG, Poland R, DeYonker NJ, Webster CE, Darensbourg DJ, Bengali AA (2011) Ligand displacement from TpMn(CO)(2)L complexes: a large rate enhancement in comparison to the CpMn(CO)(2)L analogues. Organometallics 30(11):3054–3063. doi:10.1021/Om200161g

    Article  CAS  Google Scholar 

  2. Roman-Leshkov Y, Davis ME (2011) Activation of carbonyl-containing molecules with solid lewis acids in aqueous media. ACS Catal 1(11):1566–1580. doi:10.1021/cs200411d

    Article  CAS  Google Scholar 

  3. Wang H, DeYonker NJ, Gao H, Ji L, Zhao C, Mao Z-W (2012) Mechanism of aquation and nucleobase binding of ruthenium (II) and osmium (II) arene complexes: a systematic comparison DFT study. J Organomet Chem 704:17–28. doi:10.1016/j.jorganchem.2011.12.034

    Article  CAS  Google Scholar 

  4. Wang H, DeYonker NJ, Zhang X, Zhao C, Ji L, Mao Z-W (2012) Photodissociation of a ruthenium(II) arene complex and its subsequent interactions with biomolecules: a density functional theory study. J Mol Model 18(10):4675–4686. doi:10.1007/s00894-012-1467-3

    Article  CAS  Google Scholar 

  5. van Rijt SH, Hebden AJ, Amaresekera T, Deeth RJ, Clarkson GJ, Parsons S, McGowan PC, Sadler PJ (2009) Amide linkage isomerism as an activity switch for organometallic osmium and ruthenium anticancer complexes. J Med Chem 52(23):7753–7764. doi:10.1021/Jm900731j

    Article  Google Scholar 

  6. Bruijnincx PCA, Sadler PJ (2009) Controlling platinum, ruthenium, and osmium reactivity for anticancer drug design. Adv Inorg Chem 61:1–62. doi:10.1016/S0898-8838(09)00201-3

    Article  CAS  Google Scholar 

  7. Peacock AFA, Parsons S, Sadler PJ (2007) Tuning the hydrolytic aqueous chemistry of osmium arene complexes with N, O-chelating ligands to achieve cancer cell cytotoxicity. J Am Chem Soc 129(11):3348–3357. doi:10.1021/Ja068335p

    Article  CAS  Google Scholar 

  8. Barragan F, Lopez-Senin P, Salassa L, Betanzos-Lara S, Habtemariam A, Moreno V, Sadler PJ, Marchan V (2011) Photocontrolled DNA binding of a receptor-targeted organometallic ruthenium(ii) complex. J Am Chem Soc 133(35):14098–14108. doi:10.1021/Ja205235m

    Article  CAS  Google Scholar 

  9. Gittermann SM, Letterman RG, Jiao TJ, Leu GL, DeYonker NJ, Webster CE, Burkey TJ (2011) Bond energies, reaction volumes, and kinetics for sigma- and pi-complexes of Mo(CO)(5)L. J Phys Chem A 115(32):9004–9013. doi:10.1021/Jp203915q

    Article  CAS  Google Scholar 

  10. Heilweil EJ, Johnson JO, Mosley KL, Lubet PP, Webster CE, Burkey TJ (2011) Engineering femtosecond organometallic chemistry: photochemistry and dynamics of ultrafast chelation of cyclopentadienylmanganese tricarbonyl derivatives with pendant benzenecarbonyl and pyridinecarbonyl groups. Organometallics 30(21):5611–5619. doi:10.1021/om2003656

    Article  CAS  Google Scholar 

  11. Coombs ND, Clegg W, Thompson AL, Willock DJ, Aldridge S (2008) A group 13/group 17 analogue of CO and N(2): coordinative trapping of the gal molecule. J Am Chem Soc 130(16):5449–5451. doi:10.1021/Ja800876k

    Article  CAS  Google Scholar 

  12. Coombs ND, Stasch A, Aldridge S (2008) Reactions of ‘GaI’ with organometallic transition metal halides. Inorg Chim Acta 361(2):449–456. doi:10.1016/j.ica.2007.02.037

    Article  CAS  Google Scholar 

  13. Coombs ND, Vidovic D, Day JK, Thompson AL, Le Pevelen DD, Stasch A, Clegg W, Russo L, Male L, Hursthouse MB, Willock DJ, Aldridge S (2008) Cationic terminal gallylene complexes by halide abstraction: coordination chemistry of a valence isoelectronic analogue of CO and N-2. J Am Chem Soc 130(47):16111–16124. doi:10.1021/Ja806655f

    Article  CAS  Google Scholar 

  14. Adamczyk T, Li GM, Linti G, Pritzkow H, Seifert A, Zessin T (2011) Chromium, iron and cobalt carbonyl complexes with gallium halides: synthesis and structures. Eur J Inorg Chem 23:3480–3492

    Article  Google Scholar 

  15. Gámez JA, Tonner R, Frenking G (2010) Gallium halides as alternative ligands to CO and N-2 in transition metal complexes: a bonding analysis. Organometallics 29(21):5676–5680. doi:10.1021/Om100584e

    Article  Google Scholar 

  16. Pandey KK, Aldridge S (2011) Nature of M-Ga bonds in cationic metal-gallylene complexes of iron, ruthenium, and osmium, [(eta(5)-C(5)H(5))(L)(2)M(GaX)](+): a theoretical study. Inorg Chem 50(5):1798–1807. doi:10.1021/ic102217z

    Article  CAS  Google Scholar 

  17. von Hopffgarten M, Frenking G (2012) Energy decomposition analysis. WREs Comput Mol Sci 2(1):43–62. doi:10.1002/Wcms.71

    Article  Google Scholar 

  18. Bader RFW (1990) Atoms in molecules, a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  19. Bauschlicher CW (1999) The scalar relativistic contribution to gallium halide bond energies. Theor Chem Acc 101(6):421–425. doi:10.1007/s002140050459

    Article  CAS  Google Scholar 

  20. Bauschlicher CW, Melius CF, Allendorf MD (1999) Gallium compounds, a possible problem for the G2 approaches. J Chem Phys 110(4):1879–1881. doi:10.1063/1.477851

    Article  CAS  Google Scholar 

  21. Bauschlicher CW (1998) Heats of formation of GaCl3 and its fragments. J Phys Chem A 102(50):10424–10429

    Article  CAS  Google Scholar 

  22. DeYonker NJ, Mintz B, Cundari TR, Wilson AK (2008) Application of the correlation consistent composite approach (ccCA) to third-row (Ga-Kr) molecules. J Chem Theory Comput 4(2):328–334. doi:10.1021/Ct7002463

    Article  CAS  Google Scholar 

  23. MOLPRO, version 2010.1, a package of ab initio programs Werner H-J, Knowles PJ, Manby FR, Schütz M, Celani P, Knizia G, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A, see http://www.molpro.net

  24. Gauss J, Tajti A, Kállay M, Stanton JF, Szalay PG (2006) Analytic calculation of the diagonal Born-Oppenheimer correction within configuration-interaction and coupled-cluster theory. J Chem Phys 125(14):144111. doi:10.1063/1.2356465

    Article  Google Scholar 

  25. Kállay M, Surján PR (2001) Higher excitations in coupled-cluster theory. J Chem Phys 115(7):2945–2954

    Article  Google Scholar 

  26. Kállay M, Gauss J (2005) Approximate treatment of higher excitations in coupled-cluster theory. J Chem Phys 123(21):214105. doi:10.1063/1.2121589

    Article  Google Scholar 

  27. Kállay M, Gauss J (2008) Approximate treatment of higher excitations in coupled-cluster theory. II. Extension to general single-determinant reference functions and improved approaches for the canonical Hartree-Fock case. J Chem Phys 129(14):144101. doi:10.1063/1.2988052

    Article  Google Scholar 

  28. Wilson AK, Woon DE, Peterson KA, Dunning TH Jr (1999) Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. J Chem Phys 110(16):7667–7676

    Article  CAS  Google Scholar 

  29. DeYonker NJ, Peterson KA, Wilson AK (2007) Systematically convergent correlation consistent basis sets for molecular core-valence correlation effects: the third-row atoms gallium through kryptont. J Phys Chem A 111(44):11383–11393. doi:10.1021/Jp0747757

    Article  CAS  Google Scholar 

  30. Bernath PF (1995) Spectra of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  31. Kutzelnigg W, Morgan JD (1992) Rates of convergence of the partial-wave expansions of atomic correlation energies. J Chem Phys 96(6):4484–4508

    Article  CAS  Google Scholar 

  32. Martin JML (1996) Ab initio total atomization energies of small molecules: towards the basis set limit. Chem Phys Lett 259(5–6):669–678

    Article  CAS  Google Scholar 

  33. Martin JML, Lee TJ (1996) The atomization energy and proton affinity of NH3. An ab initio calibration study. Chem Phys Lett 258(1–2):136–143

    Article  CAS  Google Scholar 

  34. Peterson KA (2003) Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13–15 elements. J Chem Phys 119(21):11099–11112

    Article  CAS  Google Scholar 

  35. Schwerdtfeger P, Fischer T, Dolg M, Igelmann G, Nicklass A, Stoll H, Haaland A (1995) The accuracy of the pseudopotential approximation. 1. An analysis of the spectroscopic constants for the electronic ground-states of Incl and Incl3 using various 3 valence electron pseudopotentials for indium. J Chem Phys 102(5):2050–2062. doi:10.1063/1.468727

    Article  CAS  Google Scholar 

  36. Feller D, Peterson KA, Crawford TD (2006) Sources of error in electronic structure calculations on small chemical systems. J Chem Phys 124(5):054107

    Article  Google Scholar 

  37. Feller D, Peterson KA, Dixon DA (2008) A survey of factors contributing to accurate theoretical predictions of atomization energies and molecular structures. J Chem Phys 129(20):204105

    Article  Google Scholar 

  38. Feller D, Peterson KA, Dixon DA (2010) Refined theoretical estimates of the atomization energies and molecular structures of selected small oxygen fluorides. J Phys Chem A 114(1):613–623

    Article  CAS  Google Scholar 

  39. Feller D, Peterson KA, Hill JG (2011) On the effectiveness of CCSD(T) complete basis set extrapolations for atomization energies. J Chem Phys 135(4):044101. doi:10.1063/1.3613639

    Article  Google Scholar 

  40. Peterson KA, Feller D, Dixon DA (2012) Chemical accuracy in ab initio thermochemistry and spectroscopy: current strategies and future challenges. Theor Chem Acc 131 (1):1079

  41. DeYonker NJ, Peterson KA (2013) Is near-”spectroscopic accuracy” possible for heavy atoms and coupled cluster theory? An investigation of the first ionization potentials of the atoms Ga-Kr. J Chem Phys 138(16):164312. doi:10.1063/1.4801854

    Article  Google Scholar 

  42. Moore CE (1971) Atomic energy levels, vol 2. Department of Commerce, Washington D.C

    Google Scholar 

  43. Osin SB, Samsonova ED, Shevelkov VF (1994) Infrared-spectra and the structure of gallium fluorides isolated in solid Argon. Zh Fiz Khim +68 (11):2009–2014

  44. Peterson KA, Krause C, Stoll H, Hill JG, Werner H-J (2011) Application of explicitly correlated coupled-cluster methods to molecules containing post-3d main group elements. Mol Phys 109(22):2607–2623

    Article  CAS  Google Scholar 

  45. DeYonker NJ, Wilson BR, Pierpont AW, Cundari TR, Wilson AK (2009) Towards the intrinsic error of the correlation consistent Composite Approach (ccCA). Mol Phys 107(8–12):1107–1121. doi:10.1080/00268970902744359

    Article  CAS  Google Scholar 

  46. Williams TG, DeYonker NJ, Ho BS, Wilson AK (2011) The correlation consistent composite approach: the spin contamination effect on an MP2-based composite methodology. Chem Phys Lett 504(1–3):88–94. doi:10.1016/j.cplett.2011.01.020

    Article  CAS  Google Scholar 

  47. DeYonker NJ, Williams TG, Imel AE, Cundari TR, Wilson AK (2009) Accurate thermochemistry for transition metal complexes from first-principles calculations. J Chem Phys 131(2):024106. doi:10.1063/1.3160667

    Article  Google Scholar 

  48. Jiang WY, DeYonker NJ, Determan JJ, Wilson AK (2012) Toward accurate theoretical thermochemistry of first row transition metal complexes. J Phys Chem A 116(2):870–885. doi:10.1021/Jp205710e

    Article  CAS  Google Scholar 

  49. Curtiss LA, Redfern PC, Raghavachari K (2011) Gn theory. WREs Comput Mol Sci 1(5):810–825. doi:10.1002/wcms.59

    Article  CAS  Google Scholar 

  50. Curtiss LA, Redfern PC, Rassolov V, Kedziora G, Pople JA (2001) Extension of gaussian-3 theory to molecules containing third-row atoms K, Ca, Ga-Kr. J Chem Phys 114(21):9287–9295. doi:10.1063/1.1366337

    Article  CAS  Google Scholar 

  51. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory using reduced order perturbation theory. J Chem Phys 127(12):124105. doi:10.1063/1.2770701

    Article  Google Scholar 

  52. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys 126(8):084108. doi:10.1063/1.2436888

    Article  Google Scholar 

  53. Laury ML, DeYonker NJ, Jiang WY, Wilson AK (2011) A pseudopotential-based composite method: the relativistic pseudopotential correlation consistent composite approach for molecules containing 4d transition metals (Y-Cd). J Chem Phys 135(21):214103. doi:10.1063/1.3662415

    Article  Google Scholar 

  54. Yockel S, Wilson AK (2008) Core-valence correlation consistent basis sets for second-row atoms (Al-Ar) revisited. Theor Chem Acc 120(1–3):119–131. doi:10.1007/s00214-007-0309-3

    Article  CAS  Google Scholar 

  55. Knowles PJ, Hampel C, Werner H-J (1993) Coupled-cluster theory for high-spin. Open-shell reference wave-functions. J Chem Phys 99(7):5219–5227

    Article  CAS  Google Scholar 

  56. Miescher E, Wehrli M (1934) Die spektren der galliumhalogenide. Helv Phys Acta 6:458

    Google Scholar 

  57. Barrow RF, Jacquest JAT, Thompson EW (1954) The ultra-violet emission spectra of the gaseous monofluorides of gallium and indium. Proc Phys Soc London, Sect A 67:528–532

    Article  Google Scholar 

  58. Barrow RF, Dodsworth PG, Zeeman PB (1957) Rotational analysis of bands of the A3Π0+, B3Π1-X1Σ+ systems of gallium monofluoride. Proc Phys Soc London, Sect A 70:34–40

    Article  Google Scholar 

  59. Barrow RF (1960) Dissociation energies of the gaseous monohalides of boron, aluminium, gallium, indium, and thallium. Trans Faraday Soc 56:952–958

    Article  CAS  Google Scholar 

  60. Hoeft J, Lovas FJ, Tiemann E, Törring T (1970) Microwave absorption spectra of Alf, Gaf, Inf, and Tlf. Z Naturforsch Pt A A 25 (7):1029

  61. Hoeft J, Nair KPR (1993) Millimeter-wave rotational spectrum of gallium monofluoride. Chem Phys Lett 215(4):371–374. doi:10.1016/0009-2614(93)85731-3

    Article  CAS  Google Scholar 

  62. Mochizuki Y, Tanaka K (1999) Theoretical investigation of the GaF molecule and its positive ion. Theor Chem Acc 101(4):257–261. doi:10.1007/s002140050438

    Article  CAS  Google Scholar 

  63. Yang XZ, Lin MR, Zhang BZ (2004) An ab initio study of the ground and valence excited states of GaF. J Chem Phys 120(9):4289–4296. doi:10.1063/1.1643718

    Article  CAS  Google Scholar 

  64. Cao YB, Yang CL, Wang MS, Ma XG, Liu WW (2013) The theoretical study of the ground electronic states of GaX (X = F, Cl, and Br) molecules. Comp Theor Chem 1016:42–47. doi:10.1016/j.comptc.2013.04.006

    Article  CAS  Google Scholar 

  65. DeYonker NJ, Allen WD (2012) Taming the low-lying electronic states of FeH. J Chem Phys 137(23):234303. doi:10.1063/1.4767771

    Article  Google Scholar 

  66. Glownia JH, Gnass DR, Walkup RE, Ratzlaff EH, Sorokin PP (1993) A femtosecond-time-scale photolysis study of vapor-phase GaCl. J Chem Phys 99(3):1654–1663. doi:10.1063/1.466202

    Article  CAS  Google Scholar 

  67. DeYonker NJ, Peterson KA, Steyl G, Wilson AK, Cundari TR (2007) Quantitative computational thermochemistry of transition metal species. J Phys Chem A 111(44):11269–11277. doi:10.1021/jp0715023

    Article  CAS  Google Scholar 

  68. Blaudeau JP, Curtiss LA (1997) Optimized Gaussian basis sets for use with relativistic effective (core) potentials: K, Ca, Ga-Kr. Int J Quantum Chem 61(6):943–952

    Article  CAS  Google Scholar 

  69. Pudasaini B, Janesko BG (2014) Agostic interactions in nickel(II) complexes: trans influence of ancillary ligands on the strength of the bond. Organometallics 33(1):84–93. doi:10.1021/om400731j

    Article  CAS  Google Scholar 

  70. Prince BM, Cundari TR (2013) Methane C-H Bond Activation by “Naked” Alkali Metal Imidyl and Alkaline earth metal imide complexes. The role of ligand spin and nucleophilicity. J Phys Chem A 117(38):9245–9251. doi:10.1021/jp404951e

    Article  CAS  Google Scholar 

  71. Letterman RG, DeYonker NJ, Webster CE, in preparation

  72. Pankratz LB (1984) Thermodynamic Properties of Halides; U. S. Bureau of Mines, Bulletin 674, Supt. Of Docs., Washington, DC

  73. Huber KP, Herzberg G (1979) Constants of diatomic molecules. Van Nostrand Reinhold, New York

    Google Scholar 

  74. Gurvich LV, Veyts IV, Alcock CB (eds) (1994) Thermodynamic properties of individual substances, vol 3. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Kirk A. Peterson (Washington State) for help with the potential energy curve fits and the Boys localization procedure. SS was funded by the NSF REU Program (CHE 1156738).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan J. DeYonker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeYonker, N.J., Shah, S.A. The role of core–valence electron correlation in gallium halides: a comparison of composite methods. Theor Chem Acc 133, 1518 (2014). https://doi.org/10.1007/s00214-014-1518-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1518-1

Keywords

Navigation