Skip to main content
Log in

The role of the host–guest interactions in the relative stability of compressed encapsulated homodimers and heterodimers of amides and carboxylic acids

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A theoretical study has been carried out on the encapsulation of heterodimers and homodimers of p-methylbenzoic acid, p-ethylbenzoic acid, p-methylbenzamide, and p-ethylbenzamide molecules in reversible capsules with a very limited cavity. The drastic compression of the guests in the capsules has been studied by density functionally theory employing the M06-2X and ωB97X-D functionals with the 6-31G(d,p) basis set following preliminary calculations by the fast ONIOM[M06-2X/6-31G(d,p):PM6] methodology. Both functionals are in agreement with respect to the geometry, the interaction energies between the monomers and the relative ordering of the isomers. We found that encapsulation is favorable even for the larger p-ethyl compounds, but complexes of encapsulated dimers lie more than 4 kcal/mol above complexes with two non-interacting encapsulated monomers. The monomers prefer to be by themselves in the host. This is the reason why the present encapsulated dimers have not been found experimentally. The relative stability of the encapsulated complexes is reversed compared to complexes in a large cavity (Tzeli et al. in J Am Chem Soc 133:16977, 2012). This shows the possibility of separation of competitive guests via reversible encapsulation under appropriate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. (1996) Comprehensive supramolecular chemistry. In: Atwood JL, Davies JED, MacNicol DD, Vögtle F, Lehn JM (eds) Supramolecular reactivity and transport: bioinorganic systems, vol 5. Pergamon, Oxford

  2. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford

    Google Scholar 

  3. (2000) Recent theoretical and experimental advances in hydrogen bonded clusters. In: Xantheas SS. Kluwer Academic Publishers, NATO ASI Series C: Mathematical and Physical Sciences, vol 561

  4. Desiraju GR, Steiner T (2001) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford

    Book  Google Scholar 

  5. Cram DJ, Cram JM (1994) Container molecules and their guests, monographs in supramolecular chemistry. In: Stoddart JF (Ed) Royal Society of Chemistry, vol 4, Cambridge

  6. Sherman JC (1995) Tetrahedron 51:3395–3422

    Article  CAS  Google Scholar 

  7. Rebek J, Jr (1996) Chem Soc Rev 96:255–264

  8. Warmuth R (2000) J Incl Phenom Mol Recognit Chem 37:1–38

    Article  CAS  Google Scholar 

  9. Fochi F, Jacopozzi P, Wegelius E, Rissanen K, Cozzini P, Marastoni E, Fisicaro E, Manini P, Fokkens R, Dalcanale E (2001) J Am Chem Soc 123:7539–7552

    Article  CAS  Google Scholar 

  10. Kang J, Hilmersson G, Santamaría J, Rebek J Jr (1998) J Am Chem Soc 120:3650–3656

    Article  CAS  Google Scholar 

  11. van Wageningen AMA, Timmerman P, van Duynhoven JPM, Verboom W, van Veggel FCJM, Reinhoudt DN (1997) Chem Eur J 3:639–654

    Article  Google Scholar 

  12. Conn MM, Rebek J Jr (1997) Chem Rev 97:1647–1668

    Article  CAS  Google Scholar 

  13. Jasat A, Sherman JC (1999) Chem Rev 99:931–967

    Article  CAS  Google Scholar 

  14. MacGillivray LR, Atwood JL (1999) Angew Chem Int Ed 38:1018–1033

    Article  CAS  Google Scholar 

  15. Hof F, Craig SL, Nuckolls C, Rebek J Jr (2002) Angew Chem Int Ed 41:1488–1508

    Article  CAS  Google Scholar 

  16. Imaoka T, Kawana Y, Kurokawa T, Yamamoto K (2013) Nat Commun 4:2581

    Article  Google Scholar 

  17. Ajami D, Dube H, Rebek J Jr (2011) J Am Chem Soc 133:9689–9691

    Article  CAS  Google Scholar 

  18. Ajami D, Tolstoy PM, Dube H, Odermatt S, Koeppe B, Guo J, Limback HH, Rebek J Jr (2011) Angew Chem Int Ed 50:528–531

    Article  CAS  Google Scholar 

  19. Jiang W, Tiefenbacher K, Ajami D, Rebek J Jr (2012) Chem Sci 3:3022–3025

    Article  CAS  Google Scholar 

  20. Tzeli D, Theodorakopoulos G, Petsalakis ID, Ajami D, Rebek J Jr (2011) J Am Chem Soc 133:16977–16985

    Article  CAS  Google Scholar 

  21. Tzeli D, Petsalakis ID, Theodorakopoulos G, Ajami D, Rebek J Jr (2013) Int J Quant Chem 113:734–739

    Article  CAS  Google Scholar 

  22. Tzeli D, Petsalakis ID, Theodorakopoulos G, Ajami D, Jiang W, Rebek J Jr (2012) Chem Phys Lett 548:55–59

    Article  CAS  Google Scholar 

  23. Tzeli D, Petsalakis ID, Theodorakopoulos G (2013) Chem Phys Lett 573:48–55

    Article  CAS  Google Scholar 

  24. Heinz T, Rudkevich DM, Rebek J Jr (1998) Nature 394:764–766

    Article  CAS  Google Scholar 

  25. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  26. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

  27. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615

    Article  CAS  Google Scholar 

  28. Curtiss LA, McGrath MP, Blaudeau JP, Davis NE, Binning RC Jr, Radom L (1995) J Chem Phys 103:6104–6113

    Article  CAS  Google Scholar 

  29. Tzeli D, Petsalakis ID, Theodorakopoulos G (2011) Phys Chem Chem Phys 13:11965–11975

    Article  CAS  Google Scholar 

  30. Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) J Mol Struct (Theochem) 462:1–21

    Article  Google Scholar 

  31. Vreven T, Morokuma K, Farkas Ö, Schlegel HB, Frisch MJ (2003) J Comp Chem 24:760–769

    Article  CAS  Google Scholar 

  32. Vreven T, Morokuma K (2006) Ann Rep Comp Chem 2:35–50

    Article  CAS  Google Scholar 

  33. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  34. Xantheas SS (1994) J Chem Phys 104:8821–8824

    Article  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc., Wallingford CT, Gaussian 09, Revision A1

  36. Mitra T, Jelfs KE, Schmidtmann M, Ahmed A, Chong SY, Adams DJ, Cooper AI (2013) Nat Chem 5:276–281

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from GSRT and the EC through the European Fund for Regional Development, NSRF 2007–2013 action Development of Research Centers—KPHPIS, project “NewMultifunctional Nanostructured Materials and Devices—POLYNANO” to GT and IDP is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Demeter Tzeli or Giannoula Theodorakopoulos.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzeli, D., Petsalakis, I.D., Theodorakopoulos, G. et al. The role of the host–guest interactions in the relative stability of compressed encapsulated homodimers and heterodimers of amides and carboxylic acids. Theor Chem Acc 133, 1503 (2014). https://doi.org/10.1007/s00214-014-1503-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1503-8

Keywords

Navigation