Skip to main content
Log in

Reaction mechanism of oxidative desulfurization of heterocyclic organic sulfides: a computational study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The potential energy surfaces of the oxidation of two model heterocyclic organic sulfides thiophene and benzothiophene were examined using H2O2 and HCO3H as oxidants adopting CCSD(T), ωB97X-D, M06-2X and B3LYP at the 6-311+G (d,p) level of theory. Stationary points on the potential energy surfaces for the first and second oxidation reaction were fully optimized and characterized. The natural orbital population analysis was also performed to understand the charge distribution. The results suggest that the oxidation of benzothiophene is faster than that of thiophene using both oxidants, and HCO3H is more efficient than H2O2 in oxidation of both sulfides, which are in accordance with the experimental observation. Such results may assist in understanding the reaction mechanism of the oxidative desulfurization of sulfides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hulea V (2001) J Catal 198:179–186

    Article  CAS  Google Scholar 

  2. Otsuki S, Nonaka T, Takashima N, Qian W, Ishihara A, Imai T, Kabe T (2000) Energy Fuels 14:1232–1239

    Article  CAS  Google Scholar 

  3. Wang D, Qian EW, Amano H, Okata K, Ishihara A, Kabe T (2003) Appl Catal A Gen 253:91–99

    Article  CAS  Google Scholar 

  4. Samokhvalov A, Tatarchuk BJ (2010) Catal Rev Sci Eng 52:381–410

    Article  CAS  Google Scholar 

  5. Hassan SI, El-Din OIS, Tawfik SM, El-Aty DMA (2013) Fuel Process Technol 106:127–132

    Article  CAS  Google Scholar 

  6. Guo B, Li Y (2012) Chem Eng Sci 72:115–125

    Article  CAS  Google Scholar 

  7. Ali M, Almalki A, Elali B, Martinie G, Siddiqui M (2006) Fuel 85:1354–1363

    Article  CAS  Google Scholar 

  8. Kong L, Lia G, Wang X (2004) Catal Lett 92:163–167

    Article  CAS  Google Scholar 

  9. Chica A, Corma A, Domine M (2006) J Catal 242:299–308

    Article  CAS  Google Scholar 

  10. Caero LC, Jorge F, Navarro A, Gutiérrez-Alejandre A (2006) Catal Today 116:562–568

    Article  Google Scholar 

  11. Kong L, Li G, Wang X, Wu B (2006) Energy Fuels 20:896–902

    Article  CAS  Google Scholar 

  12. Capel-Sanchez MC, Perez-Presas P, Campos-Martin JM, Fierro JLG (2010) Catal Today 157:390–396

    Article  CAS  Google Scholar 

  13. Chen L-j, Li F-t (2010) Energy Fuels 24:3443–3445

    Article  CAS  Google Scholar 

  14. Sengupta A, Kamble PD, Basu JK, Sengupta S (2012) Ind Eng Chem Res 51:147–157

    Article  CAS  Google Scholar 

  15. Zhao P, Zhang M, Wu Y, Wang J (2012) Ind Eng Chem Res 51:6641–6647

    Article  CAS  Google Scholar 

  16. Chandra AK, Nam P-C, Nguyen MT (2003) J Phys Chem A 107:9182–9188

    Article  CAS  Google Scholar 

  17. Mulder P, Mozenson O, Lin S, Ingold KU (2007) J Org Chem 72:2379–2386

    Article  CAS  Google Scholar 

  18. Vandeputte AG, Reyniers M-F, Marin GB (2009) Theor Chem Acc 123:391–412

    Article  CAS  Google Scholar 

  19. Cao J, Wang W, Zhang Y, Wang W, Zhang T, Lv J, Li C (2011) Theor Chem Acc 129:771–780

    Article  CAS  Google Scholar 

  20. Park J, Lee H-K, Soon A, Yu BD, Hong S (2013) J Phys Chem C 117:11731–11737

    Article  CAS  Google Scholar 

  21. Liu B, Meng X-G, Li W-Y, Zhou L-C, Hu C-W (2012) J Phys Chem A 116:2920–2926

    Article  CAS  Google Scholar 

  22. Chica A, Strohmaier K, Iglesia E (2004) Langmuir 20:10982–10991

    Article  CAS  Google Scholar 

  23. Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  24. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  25. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  26. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  27. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  28. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  29. Klamt A (1995) J Phys Chem 99:2224–2235

    Article  CAS  Google Scholar 

  30. Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799–805

    Article  Google Scholar 

  31. Frisch MJ et al (2010) Gaussian 09, revision B. 01. Gaussian, Wallingford

    Google Scholar 

  32. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  33. Frisch MJ et al (2013) Gaussian 09, revision D. 01. Gaussian, Wallingford

    Google Scholar 

  34. Connors KA (1990) Chemical kinetics—the study of reaction rate in solution. Wiley, New York

    Google Scholar 

  35. Speight JG (2005) Lange’s handbook of chemistry, 16th edn. Laramie, Wyoming

    Google Scholar 

  36. Carpenter JE, Weinhold F (1988) J Mol Struct (Theochem) 169:41–62

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21173273) and the Dr. Start Fund of Guangdong University of Petrochemical Technology. N.J.D. thanks The University of Memphis High Performance Computing Facility and Computational Research on Materials Institute (CROMIUM) for computing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanlu Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 531 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Wang, H., DeYonker, N.J. et al. Reaction mechanism of oxidative desulfurization of heterocyclic organic sulfides: a computational study. Theor Chem Acc 133, 1498 (2014). https://doi.org/10.1007/s00214-014-1498-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1498-1

Keywords

Navigation