Comparison of one-dimensional and quasi-one-dimensional Hubbard models from the variational two-electron reduced-density-matrix method

Regular Article
Part of the following topical collections:
  1. Shavitt Memorial Festschrift Collection

Abstract

Minimizing the energy of an \(N\)-electron system as a functional of a two-electron reduced density matrix (2-RDM), constrained by necessary \(N\)-representability conditions (conditions for the 2-RDM to represent an ensemble \(N\)-electron quantum system), yields a rigorous lower bound to the ground-state energy in contrast to variational wave function methods. We characterize the performance of two sets of approximate constraints, (2,2)-positivity (DQG) and approximate (2,3)-positivity (DQGT) conditions, at capturing correlation in one-dimensional and quasi-one-dimensional (ladder) Hubbard models. We find that, while both the DQG and DQGT conditions capture both the weak and strong correlation limits, the more stringent DQGT conditions improve the ground-state energies, the natural occupation numbers, the pair correlation function, the effective hopping, and the connected (cumulant) part of the 2-RDM. We observe that the DQGT conditions are effective at capturing strong electron correlation effects in both one- and quasi-one-dimensional lattices for both half filling and less-than-half filling.

Keywords

Two-electron reduced density matrix N-representability conditions Strong electron correlation Hubbard models 

References

  1. 1.
    Anderson PW (1987) Science 235:1196CrossRefGoogle Scholar
  2. 2.
    Anderson JS, Nakata M, Igarashi R, Fujisawa K, Yamashita M (2013) Comput Theor Chem 1003:22CrossRefGoogle Scholar
  3. 3.
    Barthel T, Hübener R (2012) Phys Rev Lett 108:200404CrossRefGoogle Scholar
  4. 4.
    Baumgratz T, Plenio MB (2012) New J Phys 14:023027CrossRefGoogle Scholar
  5. 5.
    Cava R, Siegrist T, Hessen B, Krajewski J, P W Jr, Batlogg B, Takagi H, Waszczak J, Schneemeyer L, Zandbergen H (1991) J Solid State Chem 94:170CrossRefGoogle Scholar
  6. 6.
    Chen Y-H, Wu W, Tao H-S, Liu W-M (2010) Phys Rev A 82:043625CrossRefGoogle Scholar
  7. 7.
    Chen Y-H, Tao H-S, Yao D-X, Liu W-M (2012) Phys Rev Lett 108:246402CrossRefGoogle Scholar
  8. 8.
    Coleman AJ (1963) Rev Mod Phys 35:668CrossRefGoogle Scholar
  9. 9.
    Coleman AJ, Absar I (1980) Int J Quant Chem 18:1279CrossRefGoogle Scholar
  10. 10.
    Coleman AJ (2000) Reduced density matrices: coulson’s challenge. Springer, BerlinCrossRefGoogle Scholar
  11. 11.
    Dagotto E, Rice TM (1996) Science 271:618CrossRefGoogle Scholar
  12. 12.
    Erdahl RM (1978) Int J Quantum Chem 13:697–718 Google Scholar
  13. 13.
    Essler FHL, Korepin VE, Schoutens K (1991) Phys Rev Lett 67:3848CrossRefGoogle Scholar
  14. 14.
    Fabrizio M, Parola A, Tosatti E (1992) Phys Rev B 46:3159CrossRefGoogle Scholar
  15. 15.
    Garrod C, Percus JK (1964) J Math Phys 5:1756CrossRefGoogle Scholar
  16. 16.
    Gidofalvi G, Mazziotti DA (2005) Phys Rev A 72:052505CrossRefGoogle Scholar
  17. 17.
    Gidofalvi G, Mazziotti DA (2006) Phys Rev A 74:012501CrossRefGoogle Scholar
  18. 18.
    Gutzwiller MC (1963) Phys Rev Lett 10:159CrossRefGoogle Scholar
  19. 19.
    Gutzwiller MC (1965) Phys Rev 137:A1726CrossRefGoogle Scholar
  20. 20.
    Hammond JR, Mazziotti DA (2005) Phys Rev A 71:062503CrossRefGoogle Scholar
  21. 21.
    Hiroi Z, Azuma M, Takano M, Bando Y (1991) J Solid State Chem 95:230CrossRefGoogle Scholar
  22. 22.
    Hubbard J (1963) Proc R Soc Lond A 276:238CrossRefGoogle Scholar
  23. 23.
    Juhász T, Mazziotti DA (2006) J Chem Phys 125:174105CrossRefGoogle Scholar
  24. 24.
    Kummer H (1967) J Math Phys 8:2063CrossRefGoogle Scholar
  25. 25.
    Landee CP, Turnbull MM, Galeriu C, Giantsidis J, Woodward FM (2001) Phys Rev B 63:100402CrossRefGoogle Scholar
  26. 26.
    Malick J, Povh J, Rendl F, Wiegele A (2009) SIAM J Optim 20:336CrossRefGoogle Scholar
  27. 27.
    Mazziotti DA (2004) J Chem Phys 121:10957Google Scholar
  28. 28.
    Mazziotti DA (1998) Chem Phys Lett 289:419CrossRefGoogle Scholar
  29. 29.
    Mazziotti DA (1998) Int J Quantum Chem 70:557CrossRefGoogle Scholar
  30. 30.
    Mazziotti DA (1998) Phys Rev A 57:4219CrossRefGoogle Scholar
  31. 31.
    Mazziotti DA, Erdahl RM (2001) Phys Rev A 63:042113CrossRefGoogle Scholar
  32. 32.
    Mazziotti DA (2002) Phys Rev A 65:062511CrossRefGoogle Scholar
  33. 33.
    Mazziotti DA (2004) Phys Rev Lett 93:213001CrossRefGoogle Scholar
  34. 34.
    Mazziotti DA (2005) Phys Rev A 72:032510CrossRefGoogle Scholar
  35. 35.
    Mazziotti DA (2006) Phys Rev A 74:032501CrossRefGoogle Scholar
  36. 36.
    Mazziotti DA (ed) (2007) Reduced-density-matrix mechanics: with application to many-electron atoms and molecules. Advances in Chemical Physics, vol 134. Wiley, New YorkGoogle Scholar
  37. 37.
    Mazziotti DA (2011) Phys Rev Lett 106:083001CrossRefGoogle Scholar
  38. 38.
    Mazziotti DA (2012) Chem Rev 112:244CrossRefGoogle Scholar
  39. 39.
    Mazziotti DA (2012) Phys Rev Lett 108:263002CrossRefGoogle Scholar
  40. 40.
    Nakata M, Nakatsuji H, Ehara M, Fukuda M, Nakata K, Fujisawa K (2001) J Chem Phys 114:8282CrossRefGoogle Scholar
  41. 41.
    Nakata M, Braams BJ, Fujisawa K, Fukuda M, Percus JK, Yamashita M, Zhao Z (2008) J Chem Phys 128:164113CrossRefGoogle Scholar
  42. 42.
    Nesterov Y, Nemirovskii AS (1993) Interior point polynomial method in convex programming: theory and applications. SIAM, PhiladelphiaGoogle Scholar
  43. 43.
    Noack R, White S, Scalapino D (1996) Physica C 270:281CrossRefGoogle Scholar
  44. 44.
    Norrestam R, Nygren M, Bovin J-O (1991) Angew Chem Int Ed 30:864CrossRefGoogle Scholar
  45. 45.
    Ohashi T, Kawakami N, Tsunetsugu H (2006) Phys Rev Lett 97:066401CrossRefGoogle Scholar
  46. 46.
    Petruziel FR, Holmes AA, Changlani HJ, Nightingale MP, Umrigar CJ (2012) Phys Rev Lett 109:230201CrossRefGoogle Scholar
  47. 47.
    Rodriguez-Guzman RR, Jimenez-Hoyos CA, Schutski R, Scuseria GE (2013) Phys Rev B 87:235129CrossRefGoogle Scholar
  48. 48.
    Rothman AE, Mazziotti DA (2008) Phys Rev A 78:032510CrossRefGoogle Scholar
  49. 49.
    Schwerdtfeger CA, Mazziotti DA (2009) J Chem Phys 130:224102CrossRefGoogle Scholar
  50. 50.
    Sinitskiy AV, Greenman L, Mazziotti DA (2010) J Chem Phys 133:014104CrossRefGoogle Scholar
  51. 51.
    Slebodzinski W (1970) Exterior forms and their application. Polish Scientific Publishers, WarsawGoogle Scholar
  52. 52.
    Tredgold RH (1957) Phys Rev 105:1421CrossRefGoogle Scholar
  53. 53.
    Vandenberghe L, Boyd S (1996) SIAM Rev. 38:49CrossRefGoogle Scholar
  54. 54.
    Verstichel B, van Aggelen H, Van Neck D, Ayers PW, Bultinck P (2009) Phys Rev A 80:032508CrossRefGoogle Scholar
  55. 55.
    Verstichel B, van Aggelen H, Poelmans W, Van Neck D (2012) Phys Rev Lett 108:213001CrossRefGoogle Scholar
  56. 56.
    Verstichel B, van Aggelen H, Poelmans W, Wouters S, Neck DV (2013) Comput Theor Chem 1003:12CrossRefGoogle Scholar
  57. 57.
    Verstichel B, Poelmans W, De Baerdmacker S, Wouters S, and Van Neck D (2013). arXiv:1307.1002
  58. 58.
    Wright S (1997) Primal-dual interior-point methods. SIAM, PhiladelphiaCrossRefGoogle Scholar
  59. 59.
    Wu W, Chen Y-H, Tao H-S, Tong N-H, Liu W-M (2010) Phys Rev B 82:245102CrossRefGoogle Scholar
  60. 60.
    Zhao Z, Braams BJ, Fukuda M, Overton ML, and Percus JK, (2004) J Chem Phys 120:2095–2104Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Chemistry and The James Franck InstituteThe University of ChicagoChicagoUSA

Personalised recommendations