Skip to main content
Log in

Heats of formation of the amino acids re-examined by means of W1-F12 and W2-F12 theories

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We have obtained accurate heats of formation for the twenty natural amino acids by means of explicitly correlated high-level thermochemical procedures. Our best theoretical heats of formation, obtained by means of the ab initio W1-F12 and W2-F12 thermochemical protocols, differ significantly (RMSD = 2.3 kcal/mol, maximum deviation 4.6 kcal/mol) from recently reported values using the lower-cost G3(MP2) method. With the more recent G4(MP2) procedure, RMSD drops slightly to 1.8 kcal/mol, while full G4 theory offers a more significant improvement to 0.72 kcal/mol (max. dev. 1.4 kcal/mol for glutamine). The economical G4(MP2)-6X protocol performs equivalently at RMSD = 0.71 kcal/mol (max. dev. 1.6 kcal/mol for arginine and glutamine). Our calculations are in excellent agreement with experiment for glycine, alanine and are in excellent agreement with the recent revised value for methionine, but suggest revisions by several kcal/mol for valine, proline, phenylalanine, and cysteine, in the latter case confirming a recent proposed revision. Our best heats of formation at 298 K (\(\Delta H_{f,298}^{\circ }\)) are as follows: at the W2-F12 level: glycine −94.1, alanine \(-\)101.5, serine \(-\)139.2, cysteine \(-\)94.5, and methionine \(-\)102.4  kcal/mol, and at the W1-F12 level: arginine \(-\)98.8, asparagine \(-\)146.5, aspartic acid \(-\)189.6, glutamine \(-\)151.0, glutamic acid \(-\)195.5, histidine \(-\)69.8, isoleucine \(-\)118.3, leucine \(-\)118.8, lysine \(-\)110.0, phenylalanine \(-\)76.9, proline \(-\)92.8, threonine \(-\)149.0, and valine \(-\)113.6 kcal/mol. For the two largest amino acids, an average over G4, G4(MP2)-6X, and CBS-QB3 yields best estimates of \(-\)58.4 kcal/mol for tryptophan, and of \(-\)117.5 kcal/mol for tyrosine. For glycine, we were able to obtain a “quasi-W4” result corresponding to \(\hbox {TAE}_e\) = 968.1, \(\hbox {TAE}_0\) = 918.6, \(\Delta H_{f,298}^{\circ }=-90.0\), and \(\Delta H_{f,298}^{\circ }=-94.0\) kcal/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hättig C, Klopper W, Köhn A, Tew DP (2012) Chem Rev 112:4

    Article  Google Scholar 

  2. Kong L, Bischoff FA, Valeev E (2012) Chem Rev 112:75

    Article  CAS  Google Scholar 

  3. Ten-no S, Noga J (2012) WIREs Comput Mol Sci 2:114

    Article  CAS  Google Scholar 

  4. Peterson KA, Feller D, Dixon DA (2012) Theor Chem Acc 131:1079

    Article  Google Scholar 

  5. Quinn JR, Zimmerman SC, Del Bene JE, Shavitt I (2007) J Am Chem Soc 129:934

    Article  CAS  Google Scholar 

  6. Distasio RA Jr, Steele RP, Rhee YM, Shao Y, Head-Gordon M (2007) J Comp Chem 28:839

    Article  CAS  Google Scholar 

  7. Šponer J, Riley KE, Hobza P (2008) Phys Chem Chem Phys 10:2595

    Article  Google Scholar 

  8. Valdes H, Pluháčková K, Pitonák M, Řezáč J, Hobza P (2008) Phys Chem Chem Phys 10:2747

    Article  CAS  Google Scholar 

  9. Valdes H, Pluháčková K, Hobza P (2009) J Chem Theory Comput 5:2248

    Article  CAS  Google Scholar 

  10. Jiang J, Wu Y, Wang Z-X, Wu C (2010) J Chem Theory Comput 6:1199

    Article  CAS  Google Scholar 

  11. Tkatchenko A, Rossi M, Blum V, Ireta J, Scheffler M (2011) Phys Rev Lett 106:118102

    Article  Google Scholar 

  12. Bokatzian-Johnson SS, Stover ML, Dixon DA (2012) J Phys Chem B 116:14844

    Article  CAS  Google Scholar 

  13. Goerigk L, Karton A, Martin JML, Radom L (2013) Phys Chem Chem Phys 15:7028

    Article  CAS  Google Scholar 

  14. Nelson DL, Cox MM (2008) Lehninger principles of biochemistry. Palgrave-Macmillan, New York

    Google Scholar 

  15. Ribeiro da Silva MAV, Ribeiro da Silva MDMC, Santos AFLOM, Roux MV, Foces-Foces C, Notario R, Guzman-Majia R, Juaristi E (2010) J Phys Chem B 114:16471

    Article  CAS  Google Scholar 

  16. Notario R, Roux MV, Foces-Foces C, da Silva MAVR, da Silva MDMCR, Santos AFLOM, Guzman-Meja R, Juaristi E (2011) J Phys Chem B 115:9401

    Article  CAS  Google Scholar 

  17. Stover ML, Jackson VE, Matus MH, Adams MA, Cassady CJ, Dixon DA (2012) J Phys Chem B 116:2905

    Article  CAS  Google Scholar 

  18. Roux MV, Notario R, Segura M, Chickos JS, Liebman JF (2012) J Phys Org Chem 25:916

    Article  CAS  Google Scholar 

  19. Roux MV, Foces-Foces C, Notario R, da Silva MAVR, da Silva MDMC, Santos AFLOM, Juaristi E (2010) J Phys Chem B 114:10530

    Article  CAS  Google Scholar 

  20. Brás NF, Perez MAS, Fernandes PA, Silva PJ, Ramos MJ (2011) J Chem Theory Comput 7:3898

    Article  Google Scholar 

  21. Ramabhadran RO, Sengupta A, Raghavachari K (2013) J Phys Chem A 117:4973

    Article  CAS  Google Scholar 

  22. Jaeger HM, Schaefer HF III, Demaison J, Császár AG, Allen WD (2010) J Chem Theory Comput 6:3066

    Article  CAS  Google Scholar 

  23. Wilke JJ, Lind MC, Schaefer HF III, Császár AG, Allen WD (2009) J Chem Theory Comput 5:1511

    Article  CAS  Google Scholar 

  24. Balabin RM (2011) Comp Theor Chem 965:15

    Article  CAS  Google Scholar 

  25. Balabin RM (2009) Chem Phys Lett 479:195

    Article  CAS  Google Scholar 

  26. Shavitt I, Bartlett RJ (2009) Many-body methods in chemistry and physics: MBPT and coupled-cluster theory. Cambridge Molecular Science, Cambridge

    Book  Google Scholar 

  27. Shavitt I (1993) The history and evolution of Gaussian basis sets. Isr J Chem 33:357

    Article  CAS  Google Scholar 

  28. Bartlett RJ, Cole SJ, Purvis GD, Ermler WC, Hsieh HC, Shavitt I (1987) J Chem Phys 87:6579

    Article  CAS  Google Scholar 

  29. Shavitt I (1985) Tetrahedron 41:1531

    Article  CAS  Google Scholar 

  30. Comeau DC, Shavitt I, Jensen P, Bunker PR (1989) J Chem Phys 90:6491

    Article  CAS  Google Scholar 

  31. Karton A, Martin JML (2012) J Chem Phys 136:124114

    Article  Google Scholar 

  32. Karton A, Daon S, Martin JML (2011) Chem Phys Lett 510:165

    Article  CAS  Google Scholar 

  33. Curtiss LA, Redfern PC, Raghavachari K (2011) WIREs Comput Mol Sci 1:810

    Article  CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  35. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  36. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  37. Dunning TH (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  38. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  39. Dunning TH Jr, Peterson KA, Wilson AK (2001) J Chem Phys 114:9244

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, et al (2009) Gaussian 09, Revision D01, Gaussian Inc, Wallingford CT. See also: URL: http://www.gaussian.com

  41. Werner H-J, Knowles PJ, Manby FR, Schütz M, Celani P, Knizia G, Korona T, Lindh R, Mitrushenkov A, Rauhut G et al (2012) Molpro 2012.1, University College Cardiff Consultants Limited: Cardiff U.K. See also: http://www.molpro.net.

  42. Peterson KA, Adler TB, Werner H-J (2008) J Chem Phys 128:084102

    Article  Google Scholar 

  43. Hill JG, Peterson KA, Knizia G, Werner H-J (2009) J Chem Phys 131:194105

    Article  Google Scholar 

  44. Feller D, Peterson KA (2013) J Chem Phys 139:084110

    Article  Google Scholar 

  45. Ten-no S (2004) Chem Phys Lett 398:56

    Article  CAS  Google Scholar 

  46. Werner H-J, Adler TB, Manby FR (2007) J Chem Phys 126:164102

    Article  Google Scholar 

  47. Knizia G, Werner H-J (2008) J Chem Phys 128:154103

    Article  Google Scholar 

  48. Adler TB, Knizia G, Werner H-J (2007) J Chem Phys 127:221106

    Article  Google Scholar 

  49. Knizia G, Adler TB, Werner H-J (2009) J Chem Phys 130:054104

    Article  Google Scholar 

  50. Martin JML, de Oliveira G (1999) J Chem Phys 111:1843

    Article  CAS  Google Scholar 

  51. Peterson KA, Dunning TH (2002) J Chem Phys 117:10548

    Article  CAS  Google Scholar 

  52. Douglas M, Kroll NM (1974) Ann Phys 82:89

    Article  CAS  Google Scholar 

  53. Heß BA (1986) Phys Rev A 33:3742

    Article  Google Scholar 

  54. de Jong WA, Harrison RJ, Dixon DA (2001) J Chem Phys 114:48

    Article  Google Scholar 

  55. Ruscic B, Pinzon RE, Morton ML, von Laszewski G, Bittner S, Nijsure SG, Amin KA, Minkoff M, Wagner AF (2004) J Phys Chem A 108:9979

    Article  CAS  Google Scholar 

  56. Ruscic B (2004) Encyclopedia of Science and Technology (2005 Yearbook of Science and Technology). McGraw-Hill, New York, p 3

    Google Scholar 

  57. Ruscic B, Pinzon RE, Morton ML, Srinivasan NK, Su M-C, Sutherland JW, Michael JV (2006) J Phys Chem A 110:6592

    Article  CAS  Google Scholar 

  58. Stevens WR, Ruscic B, Baer T (2010) J Phys Chem A 114:13134

    Article  CAS  Google Scholar 

  59. Ruscic B, Feller D, Peterson KA (2014) Theor Chem Acc 133:1415. doi:10.1007/s00214-013-1415-z

  60. Cox JD, Wagman DD, Medvedev VA (1989) CODATA key values for thermodynamics, Hemisphere Publishing Corp.: New York. http://www.codata.org/resources/databases/key1.html

  61. Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA (1999) J Chem Phys 110:4703

    Article  CAS  Google Scholar 

  62. Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) J Chem Phys 110:7650

    Article  CAS  Google Scholar 

  63. Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 126:84108

    Article  Google Scholar 

  64. Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 127:124105

    Article  Google Scholar 

  65. Chan B, Deng J, Radom L (2011) J Chem Theory Comput 7:112

    Article  CAS  Google Scholar 

  66. Curtiss LA, Redfern PC, Raghavachari K (2005) J Chem Phys 123:124107

    Article  Google Scholar 

  67. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822

    Article  CAS  Google Scholar 

  68. Karton A, Rabinovich E, Martin JML, Ruscic B (2006) J Chem Phys 125:144108

    Article  Google Scholar 

  69. Bak KL, Jørgensen P, Olsen J, Helgaker T, Gauss J (2000) Chem Phys Lett 317:116

    Article  CAS  Google Scholar 

  70. Boese AD, Oren M, Atasoylu O, Martin JML, Kallay M, Gauss J (2004) J Chem Phys 120:4129

    Google Scholar 

  71. Stanton JF (1997) Chem Phys Lett 281:130

    Article  CAS  Google Scholar 

  72. Karton A, Taylor PR, Martin JML (2007) J Chem Phys 127:064104

    Article  Google Scholar 

  73. Harding ME, Vázquez J, Ruscic B, Wilson AK, Gauss J, Stanton JF (2008) J Chem Phys 128:114111 and references therein

    Article  Google Scholar 

  74. Fogueri UR, Kozuch S, Karton A, Martin JML (2013) Theor Chem Acc 132:1291

    Article  Google Scholar 

  75. Karton A, Kaminker I, Martin JML (2009) J Phys Chem A 113:7610

    Article  CAS  Google Scholar 

  76. Harding ME, Vázquez J, Gauss J, Stanton JF, Kállay M (2011) J Chem Phys 135:044513

    Article  Google Scholar 

  77. Ramabhadran RO, Raghavachari K (2011) J Chem Theory Comput 7:2094

    Article  CAS  Google Scholar 

  78. Ramabhadran RO, Raghavachari K (2012) J Phys Chem A 116:7531

    Article  CAS  Google Scholar 

  79. Afeefy HY, Liebman JF, Stein SE “Neutral Thermochemical Data” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds Linstrom PJ, Mallard WG, National Institute of Standards and Technology, Gaithersburg MD, 20899. http://webbook.nist.gov. Retrieved October 22, 2013

  80. (2012) CRC handbook of chemistry and physics, 93rd edn. CRC Press, Boca Raton 2013

  81. Barone V, Biczysko M, Bloino J, Puzzarini C (2013) Phys Chem Chem Phys 15:10094–10111. The absolute ZPVE for the lowest-energy conformer is not given explicitly in the paper, but is 49.438 kcal/mol: Puzzarini C, personal communication to authors (January, 2014).

  82. Dunham JL (1932) Phys Rev 41:721

    Article  CAS  Google Scholar 

  83. Del Bene JE, Aue DH (1992) Shavitt I 114:1631

    Google Scholar 

  84. Grev RS, Janssen CL, Schaefer HF (1991) J Chem Phys 95:5128

    Article  CAS  Google Scholar 

  85. Schuurman MS, Allen WD, Schaefer HF (2005) J Comput Chem 26:1106

    Article  CAS  Google Scholar 

  86. Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) J Chem Theor Comput 6:2872. http://comp.chem.umn.edu/freqscale/index.html

    Google Scholar 

  87. Csonka G, Ruzsinszky A, Perdew JP (2005) J Phys Chem A 109:6779

    Article  CAS  Google Scholar 

  88. Irikura KK, Johnson RD, Kacker RN, Kessel R (2009) J Chem Phys 130:114102

    Article  Google Scholar 

  89. Sinha P, Boesch SE, Gu C, Wheeler RA, Wilson AK (2004) J Phys Chem A 108:9213

    Article  CAS  Google Scholar 

  90. Merrick JP, Moran D, Radom L (2007) J Phys Chem A 111:11683. http://groups.chem.usyd.edu.au/radom/More/ScaleFactor.html

  91. Karton A, Ruscic B, Martin JML (2007) J Mol Struct Theochem 811:345

    Article  CAS  Google Scholar 

  92. Pfeiffer F, Rauhut G, Feller D, Peterson KA (2013) J Chem Phys 138:044311

    Article  Google Scholar 

  93. Grimme S (2006) J Chem Phys 124:034108

    Article  Google Scholar 

  94. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    Article  CAS  Google Scholar 

  95. Kozuch S, Gruzman D, Martin JML (2011) J Phys Chem C 114:20801, Table S-16.

  96. Gruzman D, Karton A, Martin JML (2009) J Phys Chem A 113:11974

    Article  CAS  Google Scholar 

  97. Dorofeeva OV, Ryzhova ON (2009) J Chem Thermodyn 41:433

    Article  CAS  Google Scholar 

  98. CFOUR, Coupled-Cluster techniques for Computational Chemistry, a quantum-chemical program package by Stanton JF, Gauss J, Harding ME, Szalay PG with contributions from Auer AA, Bartlett RJ, Benedikt U, Berger C, Bernholdt DE, Bomble YJ, Cheng L, Christiansen O, Heckert M, Heun O, Huber C, Jagau TC, Jonsson D, Juslius J, Klein K, Lauderdale WJ, Matthews DA, Metzroth T, Mück LA, O’Neill DP, Price DR, Prochnow E, Puzzarini C, Ruud K, Schiffmann F, Schwalbach W, Simmons C, Stopkowicz S, Tajti A, Vázquez J, Wang F, Watts JD and the integral packages MOLECULE (Almlöf J, Taylor PR), PROPS (Taylor PR), ABACUS (Helgaker T, Jensen HJA, Jørgensen P, Olsen J), and ECP routines by Mitin AV, van Wüllen C. For the current version. http://www.cfour.de

  99. Gauss J, Tajti A, Kállay M, Stanton JF, Szalay PG (2006) J Chem Phys 125:144111

    Article  Google Scholar 

  100. Ling S, Yu W, Huang Z, Lin Z, Haranczyk M, Gutowski M (2006) J Phys Chem A 110:12282–12291

    Article  CAS  Google Scholar 

  101. Chen M, Huang Z, Lin Z (2005) J Mol Struct Theochem 719:153–158

    Article  CAS  Google Scholar 

  102. Chen M, Lin Z (2007) J Chem Phys 127:154314

    Article  Google Scholar 

  103. Meng L, Lin Z (2011) Comp Theor Chem 976:42–50

    Article  CAS  Google Scholar 

  104. Pang R, Guo M, Ling S, Lin Z (2013) Comp Theory Chem 1020:14–21

    Article  CAS  Google Scholar 

  105. Huang Z, Yu W, Lin Z (2006) J Mol Struct Theochem 801:7–20

    Article  CAS  Google Scholar 

  106. Dokmaisrijan S, Lee VS, Nimmanpipug P (2010) J Mol Struct Theochem 953:28–38

    Article  CAS  Google Scholar 

  107. Boeckx B, Maes G (2012) J Phys Chem B 116:12441–12449

    Article  CAS  Google Scholar 

  108. Huang Z, Yu W, Lin Z (2006) J Mol Struct Theochem 758:195–202

    Article  CAS  Google Scholar 

  109. Czinki E, Császár AG (2003) Chem Eur J 9:1008–1019

    Article  CAS  Google Scholar 

  110. Szidarovszky T, Czakó G, Császár AG (2009) Mol Phys 107:761–775

    Article  CAS  Google Scholar 

  111. Huang Z, Lin Z (2005) J. Phys. Chem. A 109:2656. MP2/6-311++G(d, p) total energies for 45 lowest conformers, with B3LYP/6-311G* zero-point energies.

  112. Zhang M, Huang Z, Lin Z (2005) J Chem Phys 122: 134313. Lowest 36 conformers, MP2/6-311G(2df, p)//B3LYP/6-311++G(d, p) with zero-point energy from B3LYP/6-311++G(d, p).

Download references

Acknowledgments

JMLM is the Baroness Thatcher Professor of Chemistry at the Weizmann Institute of Science and acknowledges partial financial support from the Lise Meitner-Minerva Center for Computational Quantum Chemistry and the Helen and Martin Kimmel Center for Molecular Design. This research was supported in part by the Weizmann AERI (Alternative Energy Research Initiative) and by a startup grant from the University of North Texas from which the Martin group Linux cluster was purchased. The authors would like to thank Dr. David Hrovat for assistance with procurement and management of the latter. A.K. is the recipient of an Australian Research Council (ARC) Discovery Early Career Researcher Award (project number: DE140100311). We also acknowledge the generous allocation of computing time from the National Computational Infrastructure (NCI) National Facility and the support of iVEC through the use of advanced computing resources located at iVEC@UWA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amir Karton or Jan M. L. Martin.

Additional information

Dedicated to the memory of Professor Isaiah Shavitt and published as part of the special collection of articles celebrating his many contributions.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (f 177 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karton, A., Yu, LJ., Kesharwani, M.K. et al. Heats of formation of the amino acids re-examined by means of W1-F12 and W2-F12 theories. Theor Chem Acc 133, 1483 (2014). https://doi.org/10.1007/s00214-014-1483-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1483-8

Keywords

Navigation