Advertisement

SDS: the ‘static–dynamic–static’ framework for strongly correlated electrons

  • Wenjian LiuEmail author
  • Mark R. HoffmannEmail author
Regular Article
Part of the following topical collections:
  1. Shavitt Memorial Festschrift Collection

Abstract

A genetic ‘static–dynamic–static’ (SDS) framework is proposed for describing strongly correlated electrons. It permits both simple and sophisticated parameterizations of many-electron wave functions. One particularly simple realization amounts to constructing and diagonalizing the Hamiltonian matrix in the same number of many-electron basis functions in the primary (static), external (dynamic) and secondary (static) subspaces of the full Hilbert space. It combines the merits of both internally and externally contracted configuration interaction as well as intermediate Hamiltonian approaches. When the Hamiltonian matrix elements between the contracted external functions, with the coefficients determined by first order perturbation, are approximated as the diagonal elements of the zeroth-order Hamiltonian \(H_0\), we obtain a multi-state multi-reference second-order perturbation theory (denoted as SDS-MS-MRPT2) that scales computationally with the fifth power of the molecular size. Depending on how \(H_0\) is defined, various variants of SDS-MS-MRPT2 can be obtained. For simplicity, we here choose \(H_0\) as a multi-partitioned Møller–Plesset-like diagonal operator. Further combined with the string-based macroconfiguration technique, an efficient implementation of SDS-MS-MRPT2 is realized and tested for prototypical systems of variable near-degeneracies. The results reveal that SDS-MS-MRPT2 can well describe not only standard benchmark systems but also problematic systems. Taking SDS-MS-MRPT2 as a start, the accuracy may steadily be increased by relaxing the contraction of the external functions and/or iterating the diagonalization–perturbation–diagonalization procedure. As such, the SDS framework offers a very powerful scenario for handling strongly correlated systems.

Keywords

Strongly correlated electrons Static–dynamic–static  Minimal MRCI Multi-state multi-reference perturbation theory 

Notes

Acknowledgments

The research of this work was supported by the NSFC (Project Nos. 21033001, 21273011 and 21290192) and NSF (Grant No. EPS-0814442).

References

  1. 1.
    Hirao K (1992) Chem Phys Lett 190:374CrossRefGoogle Scholar
  2. 2.
    Hirao K (1992) Chem Phys Lett 196:397CrossRefGoogle Scholar
  3. 3.
    Andersson K, Malmqvist PA, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94:5483CrossRefGoogle Scholar
  4. 4.
    Andersson K, Malmqvist PA, Roos BO (1992) J Chem Phys 96:1218CrossRefGoogle Scholar
  5. 5.
    Celani P, Werner HJ (2000) J Chem Phys 112:5546CrossRefGoogle Scholar
  6. 6.
    Finley J, Malmqvist PA, Roos BO, Serrano-Andres L (1998) Chem Phys Lett 288:299CrossRefGoogle Scholar
  7. 7.
    Shiozaki T, Győrffy W, Celani P, Werner HJ (2011) J Chem Phys 135:081106CrossRefGoogle Scholar
  8. 8.
    Nakano H (1993) J Chem Phys 99:7983CrossRefGoogle Scholar
  9. 9.
    Nakano H, Nakayama K, Hirao K, Dupuis M (1997) J Chem Phys 106:4912CrossRefGoogle Scholar
  10. 10.
    Granovsky AA (2011) J Chem Phys 134:214113CrossRefGoogle Scholar
  11. 11.
    Spiegelmann F, Malrieu JP (1984) J Phys B 17:1235CrossRefGoogle Scholar
  12. 12.
    Angeli C, Borini S, Cestari M, Cimiraglia R (2004) J Chem Phys 121:4043CrossRefGoogle Scholar
  13. 13.
    Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu JP (2001) J Chem Phys 114:10252CrossRefGoogle Scholar
  14. 14.
    Angeli C, Cimiraglia R, Malrieu JP (2001) Chem Phys Lett 350:297CrossRefGoogle Scholar
  15. 15.
    Angeli C, Cimiraglia R, Malrieu JP (2002) J Chem Phys 117:9138CrossRefGoogle Scholar
  16. 16.
    Khait YG, Song J, Hoffmann MR (2002) J Chem Phys 117:4133CrossRefGoogle Scholar
  17. 17.
    Jiang W, Khait YG, Hoffmann MR (2009) J Phys Chem A 113:4374CrossRefGoogle Scholar
  18. 18.
    Mahapatra US, Datta B, Mukherjee D (1999) J Phys Chem A 103:1822CrossRefGoogle Scholar
  19. 19.
    Mao S, Cheng L, Liu W, Mukherjee D (2012) J Chem Phys 136:024105CrossRefGoogle Scholar
  20. 20.
    Mao S, Cheng L, Liu W, Mukherjee D (2012) J Chem Phys 136:024106CrossRefGoogle Scholar
  21. 21.
    Rolik Z, Szabados Á, Surján PR (2003) J Chem Phys 119:1922CrossRefGoogle Scholar
  22. 22.
    Szabados Á, Tóth G, Rolik Z, Surján PR (2005) J Chem Phys 122:114104CrossRefGoogle Scholar
  23. 23.
    Chen F (2009) J Chem Theory Comput 5:931CrossRefGoogle Scholar
  24. 24.
    Chen F, Fan Z (2013) J Comput Chem. doi: 10.1002/jcc.23471
  25. 25.
    Lei Y, Wang Y, Han H, Song Q, Suo B, Wen Z (2013) J Chem Phys 137:144102Google Scholar
  26. 26.
    Xu E, Li S (2013) J Chem Phys 139:174111CrossRefGoogle Scholar
  27. 27.
    Chaudhuri RK, Freed KF, Hose G, Piecuch P, Kowalski K, Wloch M, Chattopadhyay S, Mukherjee D, Rolik Z, Szabados Á, Tóth G, Surján PR (2005) J Chem Phys 122:134105CrossRefGoogle Scholar
  28. 28.
    Hoffmann MR, Datta D, Das S, Mukherjee D, Szabados Á, Rolik Z, Surján PR (2009) J Chem Phys 131:204104CrossRefGoogle Scholar
  29. 29.
    Kirtman B (1981) J Chem Phys 75:798CrossRefGoogle Scholar
  30. 30.
    Malrieu JP, Durand Ph, Daudey JP (1985) J Phys A 18:809CrossRefGoogle Scholar
  31. 31.
    Heully JL, Daudey JP (1988) J Chem Phys 88:1041CrossRefGoogle Scholar
  32. 32.
    Mukhopadhyay D, Datta B, Mukherjee D (1992) Chem Phys Lett 197:236CrossRefGoogle Scholar
  33. 33.
    Malrieu JP, Heully JL, Zaitsevskii A (1995) Theor Chim Acta 90:167CrossRefGoogle Scholar
  34. 34.
    Khait YG, Hoffmann MR (1998) J Chem Phys 108:8317CrossRefGoogle Scholar
  35. 35.
    Meissner L (1998) J Chem Phys 108:9227CrossRefGoogle Scholar
  36. 36.
    Landau A, Eliav E, Kaldor U (1999) Chem Phys Lett 313:399Google Scholar
  37. 37.
    Nikolic D, Lindroth E (2004) J Phys B 37:L285CrossRefGoogle Scholar
  38. 38.
    Eliav E, Borschevsky A, Shamasundar KR, Pal S, Kaldor U (2009) Int J Quantum Chem 109:2909CrossRefGoogle Scholar
  39. 39.
    Liu W (2010) Mol Phys 108:1679CrossRefGoogle Scholar
  40. 40.
    Khait YG, Song J, Hoffmann MR (2004) Int J Quantum Chem 99:210CrossRefGoogle Scholar
  41. 41.
    Knowles PJ, Handy NC (1984) Chem Phys Lett 111:315CrossRefGoogle Scholar
  42. 42.
    Knowles PJ, Handy NC (1989) Comp Phys Comm 54:75CrossRefGoogle Scholar
  43. 43.
    Olsen J, Roos BO, Jørgensen P, Jensen HJA (1988) J Chem Phys 89:2185CrossRefGoogle Scholar
  44. 44.
    Kallay M, Surjan PR (2001) J Chem Phys 115:2945CrossRefGoogle Scholar
  45. 45.
    Roos BO, Linse P, Siegbahn PEM, Blomberg MRA (1981) Chem Phys 66:197CrossRefGoogle Scholar
  46. 46.
    McLean AD, Liu B (1973) J Chem Phys 58:1066CrossRefGoogle Scholar
  47. 47.
    Werner HJ (1987) Adv Chem Phys 49:1Google Scholar
  48. 48.
    Wang Y, Suo B, Zhai G, Wen Z (2004) Chem Phys Lett 389:315CrossRefGoogle Scholar
  49. 49.
    Siegbahn PEM (1977) Chem Phys 25:197CrossRefGoogle Scholar
  50. 50.
    Siegbahn PEM (1983) Int J Quantum Chem 23:1869CrossRefGoogle Scholar
  51. 51.
    Meyer W (1977) In: Schaefer HF III (ed) Modern theoretical chemistry. Plenum, New YorkGoogle Scholar
  52. 52.
    Werner HJ, Reinsch EA (1982) J Chem Phys 76:3144CrossRefGoogle Scholar
  53. 53.
    Siegbahn PEM (1980) Int J Quantum Chern 18:1229CrossRefGoogle Scholar
  54. 54.
    Werner HJ, Knowles PJ (1988) J Chem Phys 89:5803CrossRefGoogle Scholar
  55. 55.
    Fink R, Staemmler V (1993) Theor Chim Acta 87:129CrossRefGoogle Scholar
  56. 56.
    Gdanitz RJ, Ahlrichs R (1988) Chem Phys Lett 143:413CrossRefGoogle Scholar
  57. 57.
    Szalay PG, Bartlett RJ (1993) Chem Phys Lett 214:481CrossRefGoogle Scholar
  58. 58.
    Szalay PG (2008) Chem Phys 349:121CrossRefGoogle Scholar
  59. 59.
    Khait YG, Jiang W, Hoffmann MR (2010) Chem Phys Lett 493:1CrossRefGoogle Scholar
  60. 60.
    Zaitsevskii A, Malrieu JP (1995) Chem Phys Lett 233:597CrossRefGoogle Scholar
  61. 61.
    Huron B, Malrieu JP, Rancurel F (1973) J Chem Phys 58:5745CrossRefGoogle Scholar
  62. 62.
    Olsen J, Jørgensen P, Koch H, Balkova A, Bartlett RJ (1996) J Chem Phys 104:8007CrossRefGoogle Scholar
  63. 63.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  64. 64.
    Bauschlicher CW, Taylor PR (1987) J Chem Phys 86:2844CrossRefGoogle Scholar
  65. 65.
    Dunning TH Jr (1970) J Chem Phys 53:2823CrossRefGoogle Scholar
  66. 66.
    Dunning TH Jr, Hay PJ (1977) In: Schaefer HF III (ed) Methods of electronic structure theory, vol 2. Plenum, New YorkGoogle Scholar
  67. 67.
    Bauschlicher CW, Langhoff SR (1988) J Chem Phys 89:4246CrossRefGoogle Scholar
  68. 68.
    Huzinaga S (1965) J Chem Phys 42:1293CrossRefGoogle Scholar
  69. 69.
    Nooijen M, Shamasundar KR, Mukherjee D (2005) Mol Phys 103:2277CrossRefGoogle Scholar
  70. 70.
    Heully JL, Malrieu JP, Zaitevskii A (1996) J Chem Phys 105:6887CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Center for Computational Science and EngineeringPeking UniversityBeijingPeople’s Republic of China
  2. 2.Chemistry DepartmentUniversity of North DakotaGrand ForksUSA

Personalised recommendations