Inclusion of cybotactic effect in the theoretical modeling of absorption spectra of liquid-state systems with perturbed matrix method and molecular dynamics simulations: the UV–Vis absorption spectrum of para-nitroaniline as a case study

  • Giovanni Piacente
  • Virginia D’Aiuto
  • Massimiliano AschiEmail author
  • Giorgio Cerichelli
  • Marco Chiarini
  • Andrea Amadei
Regular Article


In this study, we present an extension of the theoretical–computational approach developed in our group and based on molecular dynamics simulations, quantum chemical calculations, perturbed matrix method, and essential dynamics analysis for taking into account the cybotactic effect in the computational modeling of absorption spectra of molecular systems in condensed phase. The low-energy UV–Vis spectra of para-nitroaniline in water, methanol, and in the presence of a zwitterionic micelle have been computationally addressed and compared to the experimental data. The approach, considering all the systematic errors deriving from the intrinsic limitations of the computational setup (force field, quantum chemical calculations, and the approximations of the method), satisfactorily reproduces the experimental spectral shifts and peaks shapes and provides a promising tool of investigation for reproducing spectral observables of very complex systems.


Computational spectroscopy Cybotactic effect Molecular dynamics Quantum chemical calculations 

Supplementary material

214_2014_1478_MOESM1_ESM.doc (34 kb)
Supplementary material 1 (DOC 34 kb)
214_2014_1478_MOESM2_ESM.pdf (1.3 mb)
Supplementary material 2 (PDF 1286 kb)


  1. 1.
    Grunenberg J (2010) Computational spectroscopy: methods, experiments and applications. Wiley, New YorkCrossRefGoogle Scholar
  2. 2.
    Barone V (2011) Computational strategies for spectroscopy: from small molecules to nanosystems. Wiley, ChichesterCrossRefGoogle Scholar
  3. 3.
    Leticia Gonzalez L, Escudero D, Serrano-Andres L (2012) Chem Phys Chem 13:28Google Scholar
  4. 4.
    Jacquemin D, Perpete EA, Ciofini I, Adamo C (2009) Acc Chem Res 42:326CrossRefGoogle Scholar
  5. 5.
    Dreuw A, Head-Gordon M (2005) Chem Rev 105:4009CrossRefGoogle Scholar
  6. 6.
    Yoshikawa T, Kobayashi M, Fujii A, Nakai H (2013) J Phys Chem B 117:5565CrossRefGoogle Scholar
  7. 7.
    Charaf-Eddin A, Planchat A, Mennucci B, Adamo C, Jacquemin D (2013) J Chem Theory Comput 9:2749CrossRefGoogle Scholar
  8. 8.
    Georg HC, Coutinho K, Canuto S (2007) J Chem Phys 126:034507CrossRefGoogle Scholar
  9. 9.
    Marenich AV, Cramer CJ, Truhlar DG, Guido CA, Mennucci B, Scalmani G, Frisch MJ (2011) Chem Sci 2:2143CrossRefGoogle Scholar
  10. 10.
    Barone V, Polimeno A (2007) Chem Soc Rev 36:1724CrossRefGoogle Scholar
  11. 11.
    Pedone A, Biczysko M, Barone V (2010) Chem Phys Chem 11:1812Google Scholar
  12. 12.
    Aschi M, Spezia R, Di Nola A, Amadei A (2001) Chem Phys Lett 344:374CrossRefGoogle Scholar
  13. 13.
    Amadei A, D’Alessandro M, D’Abramo M, Aschi M (2009) J Chem Phys 130:08410CrossRefGoogle Scholar
  14. 14.
    Warshel A, Levitt M (1976) J Mol Biol 103:227CrossRefGoogle Scholar
  15. 15.
    Aschi M, D’Abramo M, Di Teodoro C, Di Nola A, Amadei A (2005) Chem Phys Chem 6:53CrossRefGoogle Scholar
  16. 16.
    Zazza C, Amadei A, Sanna N, Grandi A, Chillemi G, D’Abramo M, Aschi M (2006) Phys Chem Chem Phys 12:1385CrossRefGoogle Scholar
  17. 17.
    Zanetti Polzi L, Amadei A, Aschi M, Daidone I (2011) J. Am Chem Soc 133:11414CrossRefGoogle Scholar
  18. 18.
    Aschi M, Fontana A, Di Meo E, Zazza C, Amadei A (2010) J Phys Chem B 114:1915CrossRefGoogle Scholar
  19. 19.
    Crescenzi O, Pavone M, De Angelis F, Barone V (2005) J Phys Chem B 109:445CrossRefGoogle Scholar
  20. 20.
    Arul Murugan N (2011) J. Phys Chem B 115:1056CrossRefGoogle Scholar
  21. 21.
    Aschi M, Zappacosta R, De Maria P, Siani G, Fontana A, Amadei A (2011) Int J Quantum Chem 111:1293CrossRefGoogle Scholar
  22. 22.
    Mennucci B, Cammi R (eds) (2007) Continuum solvation models in chemical physics: from theory to applications. Wiley, HobokenGoogle Scholar
  23. 23.
    Coutinho K, Rivelino R, Georg HC, Canuto S (2008) The sequential QM/MM method and its application to solvent effects in electronic and structural properties of solutes. In: Canuto S (ed) Solvation effects in molecules and biomolecules: computational methods nd applications. Springer, Berlin, pp 159–189CrossRefGoogle Scholar
  24. 24.
    Dulcic A, Sauteret C (1978) J Chem Phys 69:3453CrossRefGoogle Scholar
  25. 25.
    Woodford JN, Pauley MA, Wang CH (1997) J Phys Chem 101:1989CrossRefGoogle Scholar
  26. 26.
    Airinei A, Tigoianu RI, Rusu E, Dorohoi DO (2011) Dig J Nanomater Bios 6:1265Google Scholar
  27. 27.
    Seely GR (1969) J Phys Chem 73:125CrossRefGoogle Scholar
  28. 28.
    Taft RW, Kamlet MJ (1976) J Am Chem Soc 98:2886CrossRefGoogle Scholar
  29. 29.
    Abboud JL, Kamlet MJ, Taft RW (1977) J Am Chem Soc 99:8325CrossRefGoogle Scholar
  30. 30.
    Krygowski TM, Milczarek E, Wrona PK (1980) J Chem Soc Perkin Trans II 1563Google Scholar
  31. 31.
    Jessop PG, Jessop DA, Fu D, Phan L (2012) Green Chem 14:1245CrossRefGoogle Scholar
  32. 32.
    Salari H, Khodadadi-Moghaddam M, Harifi-Mood AR, Gholami MR (2010) J Phys Chem B 114:9586CrossRefGoogle Scholar
  33. 33.
    Wang WC, Shigeto S (2011) J Phys Chem A 115:4448CrossRefGoogle Scholar
  34. 34.
    Wyatt VT, Bush D, Lu J, Hallett JP, Liotta CL, Eckert CA (2005) J Supercrit Fluid 36:16CrossRefGoogle Scholar
  35. 35.
    Silva OF, Silber JJ, De Rossi RH, Correa NM, Fernández MA (2007) J Phys Chem B 111:10703CrossRefGoogle Scholar
  36. 36.
    Benjamin I (1998) Chem Phys Lett 287:480–486CrossRefGoogle Scholar
  37. 37.
    Fartzdinov VM, Schanz R, Kovalenko SA, Ernsting NP (2000) J Phys Chem A 104:11486–11496CrossRefGoogle Scholar
  38. 38.
    Sim F, Chin S, Dupuis M, Rice JE (1993) J Phys Chem 97:1158–1163CrossRefGoogle Scholar
  39. 39.
    Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V (2006) J Chem Phys 124:094107-1–094107-15Google Scholar
  40. 40.
    Moran AM, Kelley AM, Tretiak S (2003) Chem Phys Lett 367:293–307CrossRefGoogle Scholar
  41. 41.
    Cammi R, Frediani L, Mennucci B, Ruud K (2003) J Chem Phys 119:5818–5827CrossRefGoogle Scholar
  42. 42.
    Wang C-K, Wang Y-H (2005) J Chem Phys 119:4409–4412CrossRefGoogle Scholar
  43. 43.
    Slipchenko LV (2010) J Phys Chem A 114:8824–8830CrossRefGoogle Scholar
  44. 44.
    Kosenov D, Slipchenko LV (2011) J Phys Chem A 115:392–401CrossRefGoogle Scholar
  45. 45.
    Sok S, Willow SY, Zahariev F, Gordon MS (2011) J Phys Chem A 115:9801–9809CrossRefGoogle Scholar
  46. 46.
    Eriksen JJ, Sauer SPA, Mikkelsen KV, Christiansen O, Jensen HJA, Kongsted J (2013) Mol Phys 111:1235–1248CrossRefGoogle Scholar
  47. 47.
    Aschi M, Amadei A, Pellegrino A, Perin N, Po R (2012) Theor Chem Acc 131:1177CrossRefGoogle Scholar
  48. 48.
    D’Alessandro M, Amadei A, Daidone I, Po R, Alessi A, Aschi M (2013) J Phys Chem C 117:13785CrossRefGoogle Scholar
  49. 49.
    D’Alessandro M, Aschi M, Mazzuca C, Palleschi A, Amadei A (2013) J Chem Phys 139:114102CrossRefGoogle Scholar
  50. 50.
    Amadei A, Linssen ABM, Berendsen HJC (1993) Proteins Struct Funct Genet 17:412CrossRefGoogle Scholar
  51. 51.
    Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) J Chem Theory Comput 4:435CrossRefGoogle Scholar
  52. 52.
    Ostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) J Comput Chem 25:1656CrossRefGoogle Scholar
  53. 53.
    Berendsen HJC, Postma JPM, Gunsteren WF, Hermans J (1981) In: Pullmann B (ed) Intermolecular forces. D. Reider Publishing Company, Dordrecht, pp 331–342Google Scholar
  54. 54.
    Di Giampaolo A, Cerichelli G, Chiarini M, Daidone I, Aschi M (2013) Struct Chem 24:945CrossRefGoogle Scholar
  55. 55.
    Berendsen HJC, Postma JPM, van Gunsteren WF, Di Nola A, Haak JR (1984) J Chem Phys 81:3684CrossRefGoogle Scholar
  56. 56.
    Evans JD, Morriss GP (1990) Statistical mechanics of non-equilibrium liquids., Theoretical Chemistry Monograph SeriesAcademic Press, LondonGoogle Scholar
  57. 57.
    Hess B, Bekker H, Berendsen HJC, Frajie JCEM (1997) J Comput Chem 18:1463CrossRefGoogle Scholar
  58. 58.
    Darden TA, York DM, Pedersen LG (1993) J Chem Phys 98:10089CrossRefGoogle Scholar
  59. 59.
    Becke AD (1993) J Chem Phys 98:1372CrossRefGoogle Scholar
  60. 60.
    Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785CrossRefGoogle Scholar
  61. 61.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  62. 62.
    Gross EKU, Dobson JF, Petersilka M (1996) Top Curr Chem 181:81CrossRefGoogle Scholar
  63. 63.
    Helgaker T, Jensen HJA, Jørgensen P, Olsen J, Ruud K, Gren HÅ, Andersen T, Bak KL, Bakken V, Christiansen O, Dahle P, Dalskov EK, Enevoldsen T, Fernandez B, Heiberg H, Hettema H, Kirpekar DJS, Kobayashi R, Koch H, Mikkelsen KV, Norman P, Packer MJ, Saue T, Taylor PR, Vahtras O, Release 1.0 (1997) Dalton, an ab initio electronic structure programGoogle Scholar
  64. 64.
    Adamo C, Jacquemin D (2013) Chem Soc Rev 42:845CrossRefGoogle Scholar
  65. 65.
    Cerichelli G, Mancini G (2000) Langmuir 16:182CrossRefGoogle Scholar
  66. 66.
    Avila Ferrer FJ, Cerezo J, Stendardo E, Improta R, Santoro F (2013) J Chem Theory Comput 9:2072Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Giovanni Piacente
    • 1
  • Virginia D’Aiuto
    • 1
  • Massimiliano Aschi
    • 1
    Email author
  • Giorgio Cerichelli
    • 1
  • Marco Chiarini
    • 2
  • Andrea Amadei
    • 3
  1. 1.Dipartimento di Scienze Fisiche e ChimicheUniversità dell’AquilaL’AquilaItaly
  2. 2.Dipartimento di Scienze degli AlimentiUniversità di TeramoMosciano Sant’AngeloItaly
  3. 3.Dipartimento di Scienze e Tecnologie ChimicheUniversità di Roma ‘Tor Vergata’RomeItaly

Personalised recommendations