Advertisement

Studying chemical vapor deposition processes with theoretical chemistry

  • Henrik PedersenEmail author
  • Simon D. Elliott
Overview
Part of the following topical collections:
  1. Modeling Chemical Vapor Deposition and Atomic Layer Deposition

Abstract

In a chemical vapor deposition (CVD) process, a thin film of some material is deposited onto a surface via the chemical reactions of gaseous molecules that contain the atoms needed for the film material. These chemical reactions take place on the surface and in many cases also in the gas phase. To fully understand the chemistry in the process and thereby also have the best starting point for optimizing the process, theoretical chemical modeling is an invaluable tool for providing atomic-scale detail on surface and gas phase chemistry. This overview briefly introduces to the non-expert the main concepts, history and application of CVD, including the pulsed CVD variant known as atomic layer deposition, and put into perspective the use of theoretical chemistry in modeling these processes.

Keywords

Chemical vapor deposition Atomic layer deposition Thin films Surface chemistry Gas phase chemistry Theoretical chemistry 

Notes

Acknowledgments

S. D. Elliott would like to acknowledge financial support from Science Foundation Ireland under the ALDesign project, 09/IN.1/I2628, http://www.tyndall.ie/aldesign.

References

  1. 1.
    Ohring M (2006) Materials science of thin films, 2nd edn. Elsevier, SingaporeGoogle Scholar
  2. 2.
    Martin PM (2010) Handbook of deposition technologies for films and coatings, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131CrossRefGoogle Scholar
  4. 4.
    Miikkulainen V, Leskelä M, Ritala M, Puurunen RL (2013) Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends. J Appl Phys 113:021301CrossRefGoogle Scholar
  5. 5.
    Hess W, Graves DB (1993) In: Hitchman ML, Jensen KF (eds) Chemical Vapor Deposition: Principles and Applications. Academic Press, San DiegoGoogle Scholar
  6. 6.
    Irvine SJC, Lamb D (2009) In: Jones AC, Hitchman ML (eds) Chemical Vapour Deposition: Precursors, Processes and Applications. Royal Society of Chemistry, CambridgeGoogle Scholar
  7. 7.
    Hitchman ML, Jensen KF (eds) (1993) Chemical vapor deposition: principles and applications. Academic Press, San DiegoGoogle Scholar
  8. 8.
    Jones AC, Hitchman ML (eds) (2009) Chemical vapour deposition: precursors, processes and applications. Royal Society of Chemistry, CambridgeGoogle Scholar
  9. 9.
    Xu Y, Yan XT (2010) Chemical vapour deposition: an integrated engineering design for advanced materials. Springer, LondonCrossRefGoogle Scholar
  10. 10.
    Dobkin DM, Zuraw MK (2003) Principles of chemical vapor deposition: what’s going on inside the reactor. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  11. 11.
    Carlsson JO, Martin PM (2010) In: Martin PM (ed) Handbook of deposition technologies for films and coatings, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  12. 12.
    Choy KL (2003) Chemical vapour deposition of coatings. Prog Mater Sci 48:57–170CrossRefGoogle Scholar
  13. 13.
    Gates SM (1996) Surface chemistry in the chemical vapor deposition of electronic materials. Chem Rev 96:1519–1532CrossRefGoogle Scholar
  14. 14.
    Carlsson JO, Jansson U (1993) Progress in chemical vapor deposition. Prog Solid St Chem 22:237–292CrossRefGoogle Scholar
  15. 15.
    Stringfellow GB (2001) Fundamental aspects of organometallic vapor phase epitaxy. Mater Sci Eng, B 87:97–116CrossRefGoogle Scholar
  16. 16.
    Kafizas A, Carmalt CJ, Parkin IP (2013) CVD and precursor chemistry of transition metal nitrides. Coord Chem Rev 257:2073–2119CrossRefGoogle Scholar
  17. 17.
    Coordination Chemistry Reviews vol 257, issue 23-24, pp 3153-3384 (2013) contains 11 invited reviews on CVD and ALD under the title”Chemical Vapor Deposition and Atomic Layer Deposition: Precursor Design and Application”Google Scholar
  18. 18.
    Leskelä M, Ritala M (2002) Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409:138–146CrossRefGoogle Scholar
  19. 19.
    Leskelä M, Ritala M (2003) Atomic layer deposition chemistry: recent developments and future challenges. Angew Chem Int Ed 42:5548–5554CrossRefGoogle Scholar
  20. 20.
    Puurunen RL (2005) Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J Appl Phys 97:121301CrossRefGoogle Scholar
  21. 21.
    Profijt HB, Potts SE, van de Sanden MCM, Kessels WMM (2011) Plasma-assisted atomic layer deposition: basics, opportunities and challenges. J Vac Sci Tech A 29:050801CrossRefGoogle Scholar
  22. 22.
    Zaera F (2012) The surface chemistry of atomic layer depositions of solid thin films. J Phys Chem Lett 3:1301–1309CrossRefGoogle Scholar
  23. 23.
    Blocher JM (1997) Recollections of CVD conferences. Chem Vap Depo 3:161–166CrossRefGoogle Scholar
  24. 24.
    Blocher JM (1974) Structure/property/process relationships in chemical vapor deposition CVD. J Vac Sci Tech 11:680–686CrossRefGoogle Scholar
  25. 25.
    Jones AC, Hitchman ML (2009) In: Jones AC, Hitchman ML (eds) Chemical vapour deposition: precursors, processes and applications. Royal Society of Chemistry, CambridgeGoogle Scholar
  26. 26.
    Allendorf M (1998) From Bunsen to VLSI. Electrochem Soc Interface 7:36–39Google Scholar
  27. 27.
    Wöhler F, Uslar L (1855) Über metallisches Wolfram und Molybdän. Just Lieb Ann Chem 94:255–259CrossRefGoogle Scholar
  28. 28.
    Mond L, Langer C, Quincke F (1890) Action of carbon monoxide on nickel. J Chem Soc 57:749–753CrossRefGoogle Scholar
  29. 29.
    Mond L (1891) Process of depositing nickel. U.S. Patent 455,230Google Scholar
  30. 30.
    Pring JN, Fielding W (1909) The preparation at high temperatures of some refractory metals from their chlorides. J Chem Soc 95:1497–1506CrossRefGoogle Scholar
  31. 31.
    Manasevit HM (1968) Single-crystal gallium arsenide on insulating substrates. Appl Phys Lett 12:156–159CrossRefGoogle Scholar
  32. 32.
    Suntola T, Antson J (1977) Method for producing compound thin films. U.S. Patent 4,058,430Google Scholar
  33. 33.
    Ritala M, Niinistö J (2009) In: Jones AC, Hitchman ML (eds) Chemical vapour deposition: precursors, processes and applications. Royal Society of Chemistry, CambridgeGoogle Scholar
  34. 34.
    Bohr MT, Chau RS, Ghani T, Mistry K (2007) The high-k solution. IEEE Spectr 44:29–35CrossRefGoogle Scholar
  35. 35.
    Ruppi S (2008) Enhanced performance of α-Al2O3 coatings by control of crystal orientation. Surf Coat Technol 202:4257–4269CrossRefGoogle Scholar
  36. 36.
    Parkin IP, Palgrave RG (2009) In: Jones AC, Hitchman ML (eds) Chemical vapour deposition: precursors, processes and applications. Royal Society of Chemistry, CambridgeGoogle Scholar
  37. 37.
    Groner MD, Fabreguette FH, Elam JW, George SM (2004) Low-temperature Al2O3 atomic layer deposition. Chem Mater 16:639–645CrossRefGoogle Scholar
  38. 38.
    Park JS, Chae H, Chung HK, Lee SI (2011) Thin film encapsulation for flexible AM-OLED: a review. Semicond Sci Technol 26:034001CrossRefGoogle Scholar
  39. 39.
    Kakanakova-Georgieva A, Gueorguiev G, Stafström S, Hultman L, Janzén E (2006) AlGaInN metal-organic-chemical-vapor-deposition gas-phase chemistry in hydrogen and nitrogen dilutents: first-principles calculations. Chem Phys Lett 431:346–351CrossRefGoogle Scholar
  40. 40.
    Pedersen H, Larsson P, Aijaz A, Jensen J, Lundin D (2012) A novel high-power pulse PECVD method. Surf Coat Technol 206:4562–4566CrossRefGoogle Scholar
  41. 41.
    Jensen KF (1993) In: Hitchman ML, Jensen KF (eds) Chemical vapor deposition: principles and applications. Academic Press, San DiegoGoogle Scholar
  42. 42.
    Olivier S, Ducéré J-M, Mastail C, Landa G, Estève A, Rouhani MD (2008) Insights into crystalline preorganization of gas-phase precursors: densification mechanisms. Chem Mater 20:1555–1560CrossRefGoogle Scholar
  43. 43.
    Shirazi M, Elliott SD (2013) Multiple proton diffusion and film densification in atomic layer deposition modeled by density functional theory. Chem Mater 25:878–889CrossRefGoogle Scholar
  44. 44.
    Nishizawa S, Pons M (2006) Growth and doping modeling of SiC-CVD in a horizontal hot-wall reactor. Chem Vap Depos 12:516–522CrossRefGoogle Scholar
  45. 45.
    Jing X, Su K, Wang X, Wang Y, Liu Y, Zeng Q, Cheng L, Zhang L (2010) An investigation of the lowest reaction pathway of propene + BCl3 decomposition in chemical vapor deposition process. Theo Chem Acc 127:519–538CrossRefGoogle Scholar
  46. 46.
    Mårtensson P (2006) Influence of the concentration of ZrCl4 on texture, morphology and growth rate of CVD grown α-Al2O3 coatings deposited by the AlCl3/ZrCl4/H2/CO2/H2S process. Surf Coat Technol 200:3626–3632CrossRefGoogle Scholar
  47. 47.
    Blomqvist A, Århammar C, Pedersen H, Silvearv F, Norgren S, Ahuja R (2011) Understanding the catalytical effects of H2S on CVD-growth of α-alumina: thermodynamic gas-phase simulations and density functional theory. Surf Coat Technol 206:1771–1779CrossRefGoogle Scholar
  48. 48.
    Leonhardt A, Wolf E (1996) Influence of different hydrocarbons on the structure of CVD- and PACVD-TiCx hard layers. Mater Sci Eng, A 209:389–393CrossRefGoogle Scholar
  49. 49.
    Canovic S, Ljungberg B, Halvarsson M (2011) CVD TiC/alumina mulitlayers grown on sapphire single crystals. Micron 42:808–818CrossRefGoogle Scholar
  50. 50.
    Pedersen H, Lin CC, Ojamäe L (2013) On the change of preferential growth orientation in chemical vapor deposition of titanium carbide by aromatic hydrocarbon precursors. J Vac Sci Tech A 31:021507CrossRefGoogle Scholar
  51. 51.
    Pallas A, Larsson K (2010) Initial growth of BN on diamond substrates: a theoretical approach. J Phys Chem C 114:11448–11455CrossRefGoogle Scholar
  52. 52.
    Karlsson J, Larsson K (2011) Adsorption of growth species on the c-BN (100) surface. J Phys Chem C 115:16977–16983CrossRefGoogle Scholar
  53. 53.
    Karlsson J, Larsson K (2013) Kinetic considerations of gas-phase abstraction of H and F from the c-BN (100) surface. Thin Solid Films 548:280–287CrossRefGoogle Scholar
  54. 54.
    Karlsson J, Larsson K (2010) Hydrogen-induced de/reconstruction of the c-BN (100) surface. J Phys Chem C 114:3516–3521CrossRefGoogle Scholar
  55. 55.
    Karlsson J, Larsson K (2011) Halogen-induced reconstruction of the c-BN (100) surface. J Phys Chem C 115:22910–22916CrossRefGoogle Scholar
  56. 56.
    Daly SR, Kim DY, Yang Y, Abelson JR, Girolami GS (2010) Lanthanide N, N-dimethylaminodiboranates: highly volatile precursors for the deposition of lanthanide-containing thin films. J Am Chem Soc 132:2106–2107CrossRefGoogle Scholar
  57. 57.
    Daly SR, Kim DY, Girolami GS (2012) Lanthanide N, N-dimethylaminodiboranates as a new class of highly volatile chemical vapor deposition precursors. Inorg Chem 51:7050–7065CrossRefGoogle Scholar
  58. 58.
    Vlaisavljevich B, Miró P, Koballa D, Todorova T, Daly SR, Girolami GS, Cramer CJ, Gagliardi L (2012) Volatilities of actinide and lanthanide N, N -dimethylaminodiboranate chemical vapor deposition precursors: a DFT study. J Phys Chem C 116:23194–23200CrossRefGoogle Scholar
  59. 59.
    McGrath MJ, Kuo I-FW, Ghogomu JN, Mundy CJ, Siepmann JI (2011) Vapor-liquid coexistence curves for methanol and methane using dispersion corrected density functional theory. J Phys Chem B 115:11688–11692CrossRefGoogle Scholar
  60. 60.
    Pakkanen T, Lindblad M, Nevalainen V (1984) Quantum chemical studies of the formation of zinc sulfide surface by the ALE technique. First symposium on atomic layer epitaxy, VTT Symposium 54, Espoo, Finland, 13–14 DecemberGoogle Scholar
  61. 61.
    Lindblad M, Pakkanen TA (1988) Surface model for ZnS thin films: ZnS clusters and chemisorption of ZnCl2 on ZnS surface. J Comp Chem 9:581–590CrossRefGoogle Scholar
  62. 62.
    Elliott SD (2012) Atomic-scale simulation of ALD chemistry. Semicond Sci Technol 27:074008CrossRefGoogle Scholar
  63. 63.
    Murray C, Elliott SD (2013) Density functional theory predictions of the composition of ALD-grown ternary oxides. ACS Appl Mater Interfaces 5:3704–3715CrossRefGoogle Scholar
  64. 64.
    Kazadojev I, Otway DJ, Elliott SD (2013) Modeling of precursors for atomic layer deposition of magnesium and calcium oxide. Chem Vap Depos 19:117–124CrossRefGoogle Scholar
  65. 65.
    Dey G, Elliott SD (2012) Mechanism for the atomic layer deposition of copper using diethylzinc as the reducing agent: a density functional theory study using gas-phase molecules as a model. J Phys Chem A 116:8893–8901CrossRefGoogle Scholar
  66. 66.
    Shirazi M, Elliott SD (2014) Atomistic kinetic Monte Carlo study of atomic layer deposition derived from density functional theory. J Comp Chem 35:244259CrossRefGoogle Scholar
  67. 67.
    Danielsson Ö, Sukkaew P, Ojamäe L, Kordina O, Janzén E (2013) Shortcomings of CVD modelling of SiC today. Theo Chem Acc 132:1398CrossRefGoogle Scholar
  68. 68.
    Kalered E, Pedersen H, Janzén E, Ojamäe L (2013) Adsorption and surface diffusion of silicon growth species in silicon carbide chemical vapour deposition processes studied by quantum-chemical computations. Theo Chem Acc 132:1403CrossRefGoogle Scholar
  69. 69.
    Pedersen H, Leone S, Kordina O, Henry A, Nishizawa S, Koshka Y, Janzén E (2012) Chloride-based growth of silicon carbide for electronic applications. Chem Rev 112:2434–2453CrossRefGoogle Scholar
  70. 70.
    Århammar C, Silvearv F, Bergman A, Norgren S, Pedersen H, Ahjua R (2014) A theoretical study of possible point defects incorporated into α-alumina deposited by chemical vapor deposition. Theo Chem Acc 133:1433CrossRefGoogle Scholar
  71. 71.
    Boichot R, Coudurier N, Mercier F, Claudel A, Baccar N, Milet A, Blanquet E, Pons M (2014) CFD modeling of the high-temperature HVPE growth of aluminum nitride layers on c-plane sapphire: from theoretical chemistry to process evaluation. Theo Chem Acc 133:1419CrossRefGoogle Scholar
  72. 72.
    Yiming Z, Karlsson F, Larsson K (2014) Effect of CVD diamond growth by doping with nitrogen. Theo Chem Acc 133:1432CrossRefGoogle Scholar
  73. 73.
    Lin J-M, Teplyakov AV (2013) Computational investigation of surface reactivity of functionalized silicon surfaces in deposition processes. Theo Chem Acc 132:1404CrossRefGoogle Scholar
  74. 74.
    Travis CD, Adomaitis RA (2014) Modeling alumina atomic layer deposition reaction kinetics during the trimethylaluminum exposure. Theo Chem Acc 133:1414CrossRefGoogle Scholar
  75. 75.
    Dey G, Elliott SD (2014) Copper(I) carbene hydride complexes acting both as reducing agent and precursor for Cu ALD: a study through density functional theory. Theo Chem Acc 133:1416CrossRefGoogle Scholar
  76. 76.
    Yanguas-Gil A, Elam JW (2014) A Markov chain approach to simulate atomic layer deposition chemistry and transport inside nanostructured substrates. Theo Chem Acc 133:1465CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden
  2. 2.Tyndall National InstituteUniversity College CorkCorkIreland

Personalised recommendations