Advertisement

Quantum chemical characterization of the \({\tilde{X}}(^{1} A_{1} )\), \({\tilde{a}}(^{3} B_{1} )\), \({\tilde{A}}(^{1} B_{1} )\) and \({\tilde{B}}(2{}^{1}A_{1} )\) states of diiodomethylene and the enthalpies of formation of diiodomethylene, iodomethylene and iodomethylidyne

  • George B. BacskayEmail author
Regular Article
Part of the following topical collections:
  1. Shavitt Memorial Festschrift Collection

Abstract

The equilibrium energies of the \(\tilde{X}(^{1} A{\kern 1pt}_{1} )\), \(\tilde{a}(^{3} B{\kern 1pt}_{1} )\), \(\tilde{A}(^{1} B{\kern 1pt}_{1} )\) and \(\tilde{B}(2{}^{1}A{\kern 1pt}_{1} )\) states of diiodomethylene (CI2) and its atomization and dissociation energies in the complete basis limit were determined by extrapolating valence correlated (R/U)CCSD(T) and Davidson corrected multi-reference configuration interaction energies calculated with the aug–cc–pVxZ (x = T, Q, 5) basis sets and the ECP28MDF pseudopotential of iodine plus corrections for core and core-valence correlation, scalar relativity, spin–orbit coupling and zero-point energies. The geometries and vibrational frequencies were obtained at the CCSD and complete active space second-order perturbation theory levels of theory with the cc–pVTZ basis. Spin–orbit energies were computed in a large basis of configurations chosen so as to accurately describe dissociation to the 3 P and 2 P states of C and I, respectively. These computations were extended to iodomethylene (CHI) and iodomethylidyne (CI), resulting in small corrections to the thermochemistry and the singlet–triplet gap of CHI computed previously. The onset (T 00) of the \(\tilde{A} \leftarrow \tilde{X}\) excitations in CI2 is predicted to be 12,680 cm−1. The Renner–Teller intersection is computed to have a substantially lower energy (6.5 kcal mol−1) than the dissociation barrier on the \(\tilde{A}\) surface, thus internal relaxation via Renner–Teller coupling is expected to be the dominant photochemical channel. The predicted enthalpies of formation of CI2, CHI and CI in their ground states at 0 K are 109.1 ± 1, 102.8 ± 1 and 132.9 ± 1 kcal mol−1, respectively. The computed singlet–triplet gaps in CI2 and CHI are 11.1 and 4.4 kcal mol−1, respectively.

Keywords

Iodocarbene Enthalpy of formation MRCI Singlet–triplet splitting Renner–Teller effect Electronic excitation 

Notes

Acknowledgments

I wish to express my thanks to the National Computational Infrastructure (NCI) National Facility and Intersect Australia Ltd for their generous allocation of computer time.

References

  1. 1.
    Shavitt I (1985) Tetrahedron 41:1531–1542CrossRefGoogle Scholar
  2. 2.
    Wentrup C (1962) Reactive molecules. Wiley, New YorkGoogle Scholar
  3. 3.
    Liebman JF, Simons J (1986) Molecular structure and energetics, vol 1. VCH, Deerfield BeachGoogle Scholar
  4. 4.
    Finlayson-Pitts BJ, Pitts JN (1986) Atmospheric chemistry: fundamentals and experimental techniques. Wiley, New YorkGoogle Scholar
  5. 5.
    Moss RA, Platz MS, Jones M (eds) (2004) Reactive intermediate chemistry. Wiley-Interscience, HobokenGoogle Scholar
  6. 6.
    Kable SH, Reid SA, Sears TJ (2009) Int Rev Phys Chem 28:435–480CrossRefGoogle Scholar
  7. 7.
    Richmond C, Tao C, Mukarakate C, Dawes R, Brown EC, Kable SH, Reid SA (2011) J Chem Phys 135:104316CrossRefGoogle Scholar
  8. 8.
    Tao C, Richmond C, Mukarakate C, Dawes R, Kable SH, Reid SA (2011) J Chem Phys 135:104315CrossRefGoogle Scholar
  9. 9.
    Tao C, Richmond C, Mukarakate C, Kable SH, Bacskay GB, Brown EC, Dawes R, Lolur P, Reid SA (2012) J Chem Phys 137:104307CrossRefGoogle Scholar
  10. 10.
    Gu J-P, Hirsch G, Buenker RJ, Brumm M, Osmann G, Bunker PR, Jensen PA (2000) J Mol Struct 517–518:247–264CrossRefGoogle Scholar
  11. 11.
    Cameron MR, Kable SH, Bacskay GB (1995) J Chem Phys 103:4476–4483CrossRefGoogle Scholar
  12. 12.
    Knepp PT, Scalley CK, Bacskay GB, Kable SH (1998) J Chem Phys 109:2220–2232CrossRefGoogle Scholar
  13. 13.
    Schmidt TW, Bacskay GB, Kable SH (1998) Chem Phys Lett 292:80–86CrossRefGoogle Scholar
  14. 14.
    Sendt K, Bacskay GB (2000) J Chem Phys 112:2227–2238CrossRefGoogle Scholar
  15. 15.
    Sendt K, Schmidt TW, Bacskay GB (2000) Int J Quantum Chem 76:297–305CrossRefGoogle Scholar
  16. 16.
    Guss JS, Bacskay GB, Kable SH (2005) Chem Phys Lett 405:258–264CrossRefGoogle Scholar
  17. 17.
    Chase MW (ed) (1998) In: Journal of Physical Chemistry Reference Data Monograph 9. NIST-JANAF thermochemical tables 4th Ed. American Chemical Society, WashingtonGoogle Scholar
  18. 18.
    Bacskay GB (2010) J Phys Chem A 114:8625–8630CrossRefGoogle Scholar
  19. 19.
    Gilles MK, Ervin KM, Ho J, Lineberger WC (1992) J Phys Chem 96:1130–1141CrossRefGoogle Scholar
  20. 20.
    Schwartz RL, Davico GE, Ramond TM, Lineberger WC (1999) J Phys Chem A 103:8213–8221CrossRefGoogle Scholar
  21. 21.
    Tao C, Ebben C, Ko H-T, Reid SA (2008) Phys Chem Chem Phys 10:6090–6092CrossRefGoogle Scholar
  22. 22.
    Tao C, Ebben C, Reid SA (2009) J Phys Chem A 113:13407–13412CrossRefGoogle Scholar
  23. 23.
    Hajgató B, Nguyen HMT, Veszprémi T, Nguyen MT (2000) Chem Phys Phys Chem 2:5041–5045CrossRefGoogle Scholar
  24. 24.
    Hargittai M, Schultz G, Schwerdtfeger P, Seth M (2001) Struct Chem 12:377–391CrossRefGoogle Scholar
  25. 25.
    Szabados A, Hargittai M (2003) J Phys Chem A 107:4314–4321CrossRefGoogle Scholar
  26. 26.
    Russo N, Sicilia E, Toscano M (1992) J Chem Phys 97:5031–5036CrossRefGoogle Scholar
  27. 27.
    Gobbi A, Frenking G (1993) J Chem Soc Chem Commun, issue no:14, 1162–1164Google Scholar
  28. 28.
    Garcia VM, Castell O, Reguero M, Caballo R (1996) Mol Phys 87:1395–1404CrossRefGoogle Scholar
  29. 29.
    Russo N, Sicilia E, Toscano M (1993) Chem Phys Lett 213:245–249CrossRefGoogle Scholar
  30. 30.
    Worthington SE, Cramer CJ (1997) J Phys Org Chem 10:755–767CrossRefGoogle Scholar
  31. 31.
    Schwartz M, Marshall P (1999) J Phys Chem A 103:7900–7906CrossRefGoogle Scholar
  32. 32.
    Dixon DA, de Jong WA, Peterson KA, Francisco JS (2002) J Phys Chem A 106:4725–4728CrossRefGoogle Scholar
  33. 33.
    Oren M, Iron MA, Burcat A, Martin JML (2004) J Phys Chem A 108:7752–7761CrossRefGoogle Scholar
  34. 34.
    Peterson KA, Feller D, Dixon DA (2012) Theor Chem Acc 131:1079CrossRefGoogle Scholar
  35. 35.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483CrossRefGoogle Scholar
  36. 36.
    Hampel C, Peterson KA, Werner H-J (1992) Chem Phys Lett 190:1–12CrossRefGoogle Scholar
  37. 37.
    Knowles PJ, Hampel C, Werner H-J (1993) J Chem Phys 99:5219–5227CrossRefGoogle Scholar
  38. 38.
    Rittby M, Bartlett RJ (1988) J Phys Chem 92:3033–3036CrossRefGoogle Scholar
  39. 39.
    Deegan MJO, Knowles PJ (1994) Chem Phys Lett 227:321–326CrossRefGoogle Scholar
  40. 40.
    Werner H-J, Knowles PJ (1988) J Chem Phys 89:5803–5814CrossRefGoogle Scholar
  41. 41.
    Knowles PJ, Werner H-J (1988) Chem Phys Lett 145:514–522CrossRefGoogle Scholar
  42. 42.
    Langhoff SR, Davidson ER (1974) Int J Quantum Chem 8:61–72CrossRefGoogle Scholar
  43. 43.
    Dunning TH Jr (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  44. 44.
    Wilson AK, Woon DE, Peterson KA, Dunning TH Jr (1999) J Chem Phys 110:7667–7676 and references thereinGoogle Scholar
  45. 45.
    Feller D (1996) The role of databases in support of computational chemistry calculations. J Comp Chem 17:1571–1586CrossRefGoogle Scholar
  46. 46.
    Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47:1045–1052. doi: 10.1021/ci600510j CrossRefGoogle Scholar
  47. 47.
    Peterson KA, Shepler BC, Figgen D, Stoll H (2006) J Phys Chem A 110:13877–13883CrossRefGoogle Scholar
  48. 48.
    Andersson K, Malmqvist P-A, Roos BO (1992) J Chem Phys 96:1218–1226 and references thereinCrossRefGoogle Scholar
  49. 49.
    Werner H-J (1996) Mol Phys 89:645–661CrossRefGoogle Scholar
  50. 50.
    Celani P, Werner H-J (2000) J Chem Phys 112:5546–5557CrossRefGoogle Scholar
  51. 51.
    Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113–11123CrossRefGoogle Scholar
  52. 52.
    Helgaker T, Klopper W, Koch H, Noga J (1997) J Chem Phys 106:9639–9646CrossRefGoogle Scholar
  53. 53.
    Douglas M, Kroll NM (1974) Ann Phys 82:89–155CrossRefGoogle Scholar
  54. 54.
    Hess BA (1986) Phys Rev A 33:3742CrossRefGoogle Scholar
  55. 55.
    Wolf A, Reiher M, Hess BA (2002) J Chem Phys 117:9215–9226CrossRefGoogle Scholar
  56. 56.
    Reiher M, Wolf A (2004) J Chem Phys 121:2037–2047CrossRefGoogle Scholar
  57. 57.
    Reiher M, Wolf A (2004) J Chem Phys 121:10945–10956CrossRefGoogle Scholar
  58. 58.
    Bross DH, Peterson KA (2014) Theor Chem Acc 133:1434CrossRefGoogle Scholar
  59. 59.
    Berning A, Schweizer M, Werner H-J, Knowles PJ, Palmieri P (2000) Mol Phys 98:1823–1833CrossRefGoogle Scholar
  60. 60.
    Gilles MK, Polak ML, Lineberger WC (1991) J Chem Phys 95:4723–4724CrossRefGoogle Scholar
  61. 61.
    Roszak S, Krauss M, Alekseyev AB, Liebermann HP, Buenker RJ (2000) J Phys Chem A 104:2999–3003CrossRefGoogle Scholar
  62. 62.
    Matsunaga N, Koseki S, Gordon MS (1996) J Chem Phys 104:7988–7996CrossRefGoogle Scholar
  63. 63.
    Werner HJ, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2009) MOLPRO, version 2009.1, a package of ab initio programs. See http://www.molpro.net
  64. 64.
    MOLPRO, version 2012.1, a package of ab initio programs, Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M, and others, see http://www.molpro.net
  65. 65.
    Murray KK, Leopold DG, Miller TM, Lineberger WC (1988) J Chem Phys 89:5442–5453CrossRefGoogle Scholar
  66. 66.
    Xu S, Harmony MD (1993) J Phys Chem 97:7465–7470CrossRefGoogle Scholar
  67. 67.
    Yu H-G, Gonzalez-Lezana T, Marr AJ, James T, Muckerman JT, Sears TJ (2001) J Chem Phys 115:5433–5444CrossRefGoogle Scholar
  68. 68.
    Nordholm S, Bacskay G (1976) Chem Phys Lett 42:253–258CrossRefGoogle Scholar
  69. 69.
    Gurvich L, Veyts IV, Alcock CB (eds) (1992) Thermodynamic properties of individual substances, vol 2. Hemisphere, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of ChemistryThe University of SydneySydneyAustralia

Personalised recommendations